小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题3-4平行四边形(考题猜想,特殊四边形的性质在折叠问题中的巧用)技巧1:巧用平行四边形的性质解决折叠问题【例题1】(22-23八年级下·河南信阳·期中)如图,在中,,现将沿折叠,使点与点A重合,点与点落在点处,则的度数是()A.B.C.D.【点睛】此题主要考查了平行四边形的性质,以及折叠变换,关键是找准折叠后些角是对应相等的【变式1】(22-23八年级下·福建泉州·期中)如图,将平行四边形纸片折叠,使顶点恰好落在边上的点处,折痕为,下列结论不一定正确的是()A.B.C.D.【变式2】(22-23八年级下·浙江杭州·期中)如图,将平行四边形纸片按如图方式折叠,使点落到处,交于点,折痕为,若,,则的度数为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3】(22-23八年级下·重庆大渡口·期末)如图,在四边形纸片中,,将纸片沿折叠,点A、D分别落在,处,且经过点B,交BC于点G,连接,若平分,,,则的度数是.【变式4】.(22-23八年级下·四川成都·期中)如图,将平行四边形折叠,使得点落在点处,点落在点处,折痕为,连接.(1)求证:四边形是平行四边形;(2)若,,,求平行四边形的面积.【变式5】.(23-24八年级下·全国·假期作业)如图,把平行四边形纸片沿折叠,点落在点处,与相交于点,连接.求证:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1);(2).【变式6】.(23-24九年级上·广东佛山·阶段练习)【教材呈现】人教八年级下册数学教材第59页的部分内容.如图1,把一张矩形纸片按如图那样折一下,就可以裁出正方形纸片,为什么?(1)【问题解决】如图1,已知矩形纸片,将矩形纸片沿过点的直线折叠,使点落在边上,点的对应点为,折痕为,点在上.求证:四边形是正方形.(请完成以下填空)证明:四边形是矩形,,折叠,,四边形是矩形().折叠,,四边形是正方形()(2)【问题拓展】如图2,已知平行四边形纸片,将平行四边形纸片沿过点的直线折叠,使点落在边上,点的对应点为,折痕为,点在边上.①求证:四边形是菱形.②连结,若,,求菱形的面积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式7】.(23-24八年级下·重庆铜梁·阶段练习)综合与实践问题情境:在综合实践活动课上,同学们以“平行四边形纸片的折叠”为主题开展数学活动.在平行四边形纸片中,E为边上任意一点,将沿折叠,点D的对应点为.分析探究:(1)如图1,当,当点恰好落在边上时,三角形的形状为.问题解决:(2)如图2,当E,F为边的三等分点时,连接并延长,交边于点G.试判断线段与的数量关系,并说明理由.(3)如图3,当,时,连接并延长,交边于点H.若的面积为24,,请直接写出线段的长.【变式8】.(21-22八年级下·江苏苏州·期中)【理解概念】定义:有三个角相等的四边形叫做三等角四边形.(1)下列四边形是三等角四边形的是_________.(填序号)①平行四边形;②菱形;③矩形;④正方形.【巩固新知】(2)如图,折叠平行四边形DEBF,使得顶点E、F分别落在边BE、BF上的点A、C处,折痕为DG、DH.求证:四边形ABCD为三等角四边形.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【拓展提高】(3)如图,在三等角四边形ABCD中,∠A=∠B=∠C,若AB=5,,DC=7,则BC的长度为_________.技巧2:巧用菱形的性质解决折叠问题【例题2】(22-23八年级下·山东临沂·期中)如图,菱形纸片中,,折叠菱形纸片,使点落在(为中点)所在的直线上,得到经过点的折痕.则的大小为()A.B.C.D.【变式1】.(23-24八年级下·广东江门·期中)如图,已知菱形的边长为6,且,点分别在边上,将菱形沿折叠,使点B正好落在边上的点G处.若,则的长为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2】.(23-24八年级下·江苏苏州·阶段练习)如图,菱形纸片,将该菱形纸片折叠,使点恰好落在边的中点处,折痕与边、...