小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题10勾股定理的综合探究题型(原卷版)题型一探究直角三角形的边和高之间的关系典例1(湖州模拟)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h,有下列四种说法:①a•b=c•h;②a+b<c+h;③以a+b、h、c+h为边的三角形,是直角三角形;④1a2+1b2=1h2.其中正确的有()A.1个B.2个C.3个D.4个题型二捕捉“手拉手”全等模型或旋转构造“手拉手全等”模型典例2(2022•卧龙区校级开学)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,下列结论:①△AED≌△AEF;②BF=CD;③BE+DC>DE;④BE2+DC2=DE2.其中正确的有()A.1个B.2个C.3个D.4个典例3(2020•滨州模拟)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数.针对练习1.(洪山区期中)如图,∠AOB=30°,P点在∠AOB内部,M点在射线OA上,将线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点(OM>ON),若PM¿❑√10,ON=8,则OM=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2020秋•永嘉县校级期末)如图,在△AOB与△COD中,∠AOB=∠COD=90°,AO=BO,CO=DO,连接CA,BD.(1)求证:△AOC≌△BOD;(2)连接BC,若OC=1,AC¿❑√7,BC=3①判断△CDB的形状.②求∠ACO的度数.题型三倍长中线构造全等三角形典例4(2022•苏州模拟)如图1,在△ABC中,∠ACB=90°,点D为AB中点,DE,DF分别交AC于点E,交BC于点F,且DE⊥DF.(1)如果CA=CB,连接CD.①求证:DE=DF;②求证:AE2+BF2=EF2;(2)如图2,如果CA<CB,探索AE,BF和EF之间的数量关系,并加以证明.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型四以两个直角三角形的公共边或等边为桥梁运用双勾股典例5[阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD=,求线段CD′的长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com针对训练1.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D.若AC=3,AB=5,则CD的长为()A.B.C.D.2.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.AC=17,AD=15,BC=28,则AE的长等于.题型五勾股定理解决折叠问题典例6(2022•东莞市校级二模)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,则EF=()A.3B.4C.❑√29D.❑√34针对训练1.如图,将一张长方形纸片沿着AE折叠后,点D恰好与BC边上的点F重合,已知AB=6cm,BC=10cm,求EC的长度.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型六勾股定理在平面直角坐标系背景下的应用典例7(2017春•武昌区校级月考)如图,A(0,m),B(n,0),满足❑√(m−5)2+¿n210﹣n+25=0(1)求点A,点B的坐标;(2)点P是第二象限内一点,过点A作AC⊥射线BP,连接CO,试探究BC,AC,CO之间的数量关系并证明.(3)在(2)的条件下,∠POC=∠APC,PA=4❑√2,求PB的长.针对训练1.(2022秋•莲湖区校级期中)在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),A(1,❑√3).(1)求线段AB的长;(2)若在x轴上有一点P,使得△PAB为等腰三角形,请你求出点P的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com