小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题12勾股定理的实际应用分类训练(原卷版)专题诠释:本了最近常考的勾股定理用型共二十。全部精最新专题总结实际应类计种选试题,迎下使用。欢载类型一勾股定理之大树折断模型1.(2022秋•辉县市期末)如图1,一棵大树在一次强烈的地震中于离地面5米处折断倒下,树顶落在离树根12米处,图2是这棵大树折断的示意图,则这棵大树在折断之前的高是()A.20米B.18米C.16米D.15米2.(2022秋•郯城县校级期末)如图,一根竖直的木杆在离地面3m处折断,木杆顶端落在地面上,且与地面成30°角,则木杆折断之前高度约为m.3.(2022秋•达川区期末)如图,一棵大树(树干与地面垂直)在一次强台风中于离地面6米B处折断倒下,倒下后的树顶C与树根A的距离为8米,则这棵大树在折断前的高度为()A.10米B.12米C.14米D.16米4.(2022秋•泰山区期末)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.类型二勾股定理之小鸟飞行距离问题5.(2022秋•绿园区校级期末)如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞行()A.6mB.8mC.10mD.18m小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(2022秋•运城期末)如图,∠AOB=90°,OA=18cm,OB=6cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?类型三求河宽7.(2022秋•泰兴市期末)如图,某渡船从点B处沿着与河岸垂直的路线AB横渡,由于受水流的影响,实际沿着BC航行,上岸地点C与欲到达地点A相距70米,结果发现BC比河宽AB多10米,求该河的宽度AB.(两岸可近似看作平行)类型四求旗杆高度8.(2022秋•城关区校级期末)如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?9.(2022春•平阴县期末)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,则可算出旗杆的高度是()米.A.9B.11C.12D.15类型五勾股定理之梯子滑动问题10.(2022秋•烟台期末)一架长5m的梯子斜靠在墙上,梯子底端到墙的距离为3m.若梯子顶端下滑1m,那么梯子底端在水平方向上滑动了()A.1mB.小于1mC.大于1mD.无法确定小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.(2022秋•长安区校级期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为()A.2mB.2.5mC.2.6mD.2.7m12.(2022秋•蒲城县期末)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m).13.(2022秋•临汾期末)如图,某火车站内部墙面MN上有破损处(看作点A),现维修师傅需借助梯子DE完成维修工作.梯子的长度为5m,将其斜靠在这面墙上,测得梯子底部E离墙角N处3m,维修师傅爬到梯子顶部使用仪器测量,此时梯子顶部D距离墙面破损处lm.(1)该火车站墙面破损处A距离地面有多高?(2)如...