小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com全等三角形综合训练(一)1.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线PQ过点A且PQ//BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线PQ上(不与点A重合).(1)如图1,DE与AC交于点M,若DF⊥PQ于点D交AB于点F,求证:△BDF≌△MDA;(2)在图2中,DE与CA延长线交于点M,试猜想线段BD、ED、EM的数量关系,并证明你的猜想.(3)在图3中,DE与AC延长线交于点M,(2)中结论是否成立?如果成立,请给予证明;如果不成立,请说明理由.2.已知点为平分线上一点,于,于,点,分别是射线,上的点,且.(1)如图,当点①在线段上,点在线段上时,易证得;(要证明)(2)如图,当点②在线段上,点在线段的延长线上时,(1)中结论是否还成立?如果成立,请你证明,如果不成立,请说明理由;(3)在(2)的条件下,直接写出线段,与之间的数量关系______;(4)如图,当点③在线段的延长线上,点在线段上时,若,且,求四边形的面积.3.问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.4.如图(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为(s).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)若点Q的运动速度与点P的运动速度相等,当=1时,△ACP△BPQ是否全等?PC与PQ是否垂直?请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB于A,BD⊥AB于B”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为cm/s,是否存在实数,使得△ACP与△BPQ全等?若存在,求出相应的、的值;若不存在,请说明理由.5.(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.6.如图(1)~(3),已知的平分线OM上有一点P,的两边与射线OA、OB交于点C、D,连接CD交OP于点G,设,.(1)如图(1),当时,试猜想PC与PD,与的数量关系(不用说明理由);(2)如图(2),当,时,(1)中的两个猜想还成立吗?请说明理由.(3)如图(3),当时,你认为(1)中的两个猜想是否仍然成立,若成立,请直接写出结论;若不成立,请说明理由.7.在我们的数学课本上有这样一道练习题:已知,如图1所示,△ABC中∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN,CE⊥MN,垂足分别为点D,E试判断BD+CE与DE的关系,并给出证明.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)还记得是怎么做的吗?请你再做一遍.(2)拓展探究:请从上面的练习题中获取灵感来解决下面的问题:已知,如图2,△ABC、△DEC均为等腰直角三角形,其中∠ACB=∠DCE=90°,连接BE、AD,过C点作CP⊥BE于P,延长PC交AD于Q,试判断Q点在AD上的位置,并说明理由.8.(1)模型的发现:如图1,在中,,,直线经过点,且、两点在直线的同侧...