小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题03轴对称十大重难题型一.轴对称图形的存在性之格点类(钥匙---对称轴)1.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()实战训练小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.3个B.4个C.5个D.6个试题分析:解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.答案详解:解:与△ABC成轴对称且以格点为顶点三角形有△ABG、△CDF、△AEF、△DBH,△BCG共5个,所以选:C.2.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.试题分析:根据轴对称图形的定义与判断可知.答案详解:解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△ABD,△BCE,△GHF,△EMN,△AMQ,共有5个.所以答案是:5.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二.轴对称的性质3.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为n5+¿36°(用含n的式子表示).试题分析:由矩形的性质和折叠的性质即可得出答案.答案详解:解:如图,设∠BAD′=x,则∠CAE=2x,由翻折变换的性质可知,∠DAE=∠EAD′=2x+n, ∠DAB=90°,∴4x+2n+x=90°,∴x¿15(90°2﹣n),∴∠DAE=2×15(90°2﹣n)+n¿n5+¿36°.所以答案是:n5+¿36°.4.如图,点P为∠AOB内部任意一点,点P与点P1关于OA对称,点P与点P2关于OB对称,OP=8,∠AOB=45°,则△OP1P2的面积为32.试题分析:根据轴对称的性质,可得OP1、OP2的长度等于OP的长,∠P1OP2的度数等于∠AOB的度数的两倍,再根据直角三角形的面积计算公式解答即可.答案详解:解: 点P1和点P关于OA对称,点P2和点P关于OB对称,∴OP1=OP=OP2=8,且∠P1OP2=2∠AOB=90°.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴△P1OP2是直角三角形,∴△OP1P2的面积为12×8×8=32,所以答案是:32.三.尺规作图:轴对称,角平分,垂直平分线5.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)试题分析:(1)作线段AB的垂直平分线与l的交点即为所求;(2)作点A关于l的对称点A′,连接BA′并延长交l于点Q,点Q即为所求.答案详解:解:6.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N的距离分别相等(保留作图痕迹).试题分析:点P是∠AOB的平分线与线段MN的中垂线的交点.答案详解:解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.线段的垂直平分线的性质1:线段垂直平分线上的点与这条线段两个端点的距离相等.如图,△ABC中,AB=AC=16cm,(1)作线段AB的垂直平分线DE,交AB于点E,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接BD,如果BC=10cm,则△BCD的周长为26cm.试题分析:根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案;(1)利用线段垂直平分线的作法进而得出即可;(2)由线段的垂直平分线的性质可得:AD=BD,从而将△BCD的周长转化为:AD+CD+BC,即AC+BC=16+10=26cm.答案详解:解:线段垂直平分线上的点与这条线段两个端点的距离相等,所以答案是:两个端点;相等;(1)如图所示,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)连接BD, DE是AB的垂直平分线,∴AD=BD, △BCD的周长=BD+DC+BC,∴△BCD的周长=AD+DC+BC,即AC+BC=16+10=26cm.所以答案是:26.8.如图,在...