小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题15半角模型证全等1.【问题背景】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.【解答】(1)解:如图1,在△ABE和△ADG中, ,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG, ∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com ,∴△AEF≌△AGF(SAS),∴EF=FG, FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中, ,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG, ∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中, ,∴△AEF≌△AGF(SAS),∴EF=FG, FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com ,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG. ∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中, ,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+DF=AE+CF+DE+DF=AD+CD=5+5=10.2.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comB点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:AE+CF=EF.(2)当∠MBN绕B点旋转到AE≠CF时,在图2种情况下,求证:AE+CF=EF.(3)当∠MBN绕B点旋转到AE≠CF时,在图3种情况下上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.【解答】(1)证明: AB⊥AD,BC⊥CD,∴∠A=∠C在△ABE与△CBF中,,∴△ABE≌△CBF(SAS),∴∠ABE=∠CBF,BE=BF, ∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=,CF=, ∠MBN=60°,BE=BF,∴△BEF为等边三角形,∴BE=BF=EF,∴AE=CF=,∴AE+CF=EF;(2)证明:如图,将Rt△ABE顺时针旋转120°,得△BCG,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴BE=BG,AE=CG,∠A=∠BCG, AB=BC,∠ABC=120°,∴点A与点C重合, ∠A=∠BCF=90°,∴∠BCG+∠BCF=180°,∴点G、C、F三点共线, ∠ABC=120°,∠MBN=60°,∠ABE=∠CBG,∴∠GBF=60°,在△GBF与△EBF中,,∴△GBF≌△EBF(SAS),∴FG=EF,∴EF=AE+CF;(3)解:不成立,EF=AE﹣CF,理由如下:如图,将Rt△ABE顺时针旋转120°,得△BCG,∴AE=CG,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由(2)同理得,点C、F、G三点共线, AB=BC,∠ABC=120°,∴点A与点C重合,∠ABE=∠CBG,∴BG=BE, ∠ABC=∠ABE+∠CBE=120°,∴∠CBG+∠CBE=∠GBE=120°, ∠MBN=60°,∴∠GBF=60°,在△BFG与△BFE中,,∴△BFG≌△BFE(SAS),∴GF=EF,∴EF=AE﹣CF.3.(1)阅读理解:如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,这样...