小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题02三角形的内角和与外角考点一三角形内角和定理的证明考点二与平行线有关的三角的内角和问题考点三与角平分线有关的三角的内角和问题考点四三角形折叠中的角度问题考点五三角形内角和定理的应用考点六三角形外角的定义和性质考点一三角形内角和定理的证明例题:(2021·广西·靖西市教学研究室八年级期末)(1)如图①,直线DE经过点A,DE∥BC.若∠B=45°,∠C=58°,那么∠DAB=;∠EAC=;∠BAC=.(在空格上填写度数)(2)求证:在△ABC中,∠A+∠B+∠C=180°.【答案】(1)45°;58°;77°(2)见解析【解析】【分析】(1)通过平行线的性质,两直线平行,内错角相等,可分别求出:,.由图可知:,可求出:.(2)过点A作,通过平行线的性质,可得:,所以.【详解】(1)解:,,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案是:45°,58°,77°;(2)证明:过点A作,【点睛】本题主要考查知识点为,平行线的性质.即:两直线平行,同位角相等,内错角相等,同旁内角互补.熟练掌握平行线的性质是解决本题的关键.【变式训练】1.(2022·全国·八年级专题练习)在小学,我们曾经通过动手操作,利用拼图的方法研究了三角形三个内角的数量关系.如图,把三角形ABC分成三部分,然后以某一顶点(如点B)为集中点,把三个角拼在一起,观察发现恰好构成了平角,从而得到了“三角形三个内角的和是180°”的结论.但是,通过本学期的学习我们知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.小聪认真研究了拼图的操作方法,形成了证明命题“三角形三个内角的和是180°”的思路:①画出命题对应的几何图形;②写出已知,求证;③受拼接方法的启发画出辅助线;④写出证明过程.请你参考小聪解决问题的思路,写出证明该命题的完整过程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】见解析【解析】【分析】根据要求画出△ABC,写出已知,求证.构造平行线,利用平行线的性质解决问题即可.【详解】解:已知:△ABC.求证:∠A+∠B+∠C=180°.证明:如图,延长CB到F,过点B作BE∥AC. BE∥AC,∴∠1=∠4,∠5=∠3, ∠2+∠4+∠5=180°,∴∠1+∠2+∠3=180°,即∠A+∠ABC+∠C=180°.【点睛】本题考查三角形内角和定理的证明,平行线的性质,平角的定义等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.2.(2022·北京·中考真题)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com已知:如图,,求证:方法一证明:如图,过点A作方法二证明:如图,过点C作【答案】答案见解析【解析】【分析】选择方法一,过点作,依据平行线的性质,即可得到,,再根据平角的定义,即可得到三角形的内角和为.【详解】证明:过点作,则,.两直线平行,内错角相等)点,,在同一条直线上,.(平角的定义).即三角形的内角和为.【点睛】本题主要考查了平行线的性质以及三角形内角和定理的运用,熟练掌握平行线的性质是解题的关键.考点二与平行线有关的三角的内角和问题例题:(2022·山东泰安·一模)如图,ABCD,分别与,交于点,.若,,则______.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】【分析】通过两直线平行,同位角相等,求出∠ABE的度数,再利用三角形内角和定理求解.【详解】解:,,在△ABE中,,,.故答案为:.【点睛】本题考查平行线的性质,三角形的内角和定理,灵活运用平行线的性质和三角形内角和定理是解题的关键.【变式训练】1.(2022·江西南昌·模拟预测)如图,直线,被直线,所截.若//,,,则的度数为()A.B.C.D.【答案】C【解析】【分析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由两直线平行,同...