小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06模型构建专题:全等三角形中的常见解题模型模型构建一四边形中构造全等三角形解题模型构建二一线三等角模型模型构建三三垂直模型模型构建四倍长中线模型模型构建一四边形中构造全等三角形解题例题:(2021·天津·耀华中学八年级期中)如图,在四边形ABCD中,AB=CB,AD=CD.求证∠C=∠A.【答案】见解析【解析】【分析】先连接BD,由AB=CB、AD=CD、BD=BD可证△ABD≌△CBD,即可证得结论.【详解】证明:如图:连接BD, 在△ABD和△CBD中,∴△ABD≌△CBD,∴∠C=∠A.典型例题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【点睛】本题主要考查了全等三角形的判定与性质,正确作出辅助线、灵活运用SSS证明三角形全等是解答本题的关键.【变式训练】1.(2022·山东济宁·八年级期末)如图,在四边形ABCD中,于点B,于点D,点E,F分别在AB,AD上,,.(1)若,,求四边形AECF的面积;(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想.【答案】(1)48(2)∠DAB+∠ECF=2∠DFC,证明见解析【解析】【分析】(1)连接AC,证明△ACE≌△ACF,则S△ACE=S△ACF,根据三角形面积公式求得S△ACF与S△ACE,根据S四边形AECF=S△ACF+S△ACE求解即可;(2)由△ACE≌△ACF可得∠FCA=∠ECA,∠FAC=∠EAC,∠AFC=∠AEC,根据垂直关系,以及三角形的外角性质可得∠DFC+∠BEC=∠FCA+∠FAC+∠ECA+∠EAC=∠DAB+∠ECF.可得∠DAB+∠ECF=2∠DFC(1)解:连接AC,如图,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在△ACE和△ACF中∴△ACE≌△ACF(SSS).∴S△ACE=S△ACF,∠FAC=∠EAC. CB⊥AB,CD⊥AD,∴CD=CB=6.∴S△ACF=S△ACE=AE·CB=×8×6=24.∴S四边形AECF=S△ACF+S△ACE=24+24=48.(2)∠DAB+∠ECF=2∠DFC证明: △ACE≌△ACF,∴∠FCA=∠ECA,∠FAC=∠EAC,∠AFC=∠AEC. ∠DFC与∠AFC互补,∠BEC与∠AEC互补,∴∠DFC=∠BEC. ∠DFC=∠FCA+∠FAC,∠BEC=∠ECA+∠EAC,∴∠DFC+∠BEC=∠FCA+∠FAC+∠ECA+∠EAC=∠DAB+∠ECF.∴∠DAB+∠ECF=2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.2.(2022·福建·漳州实验中学七年级阶段练习)在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?【答案】(1)见解析;(2)CE+BG=EG,理由见解析;(3)当∠EDG=90°-α时,(2)中结论仍然成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】【分析】(1)首先判断出,然后根据全等三角形判定的方法,判断出,即可判断出.(2)猜想、、之间的数量关系为:.首先根据全等三角形判定的方法,判断出,即可判断出;然后根据,可得,,再根据,判断出,据此推得,所以,最后根据,判断出即可.(3)根据(2)的证明过程,要使仍然成立,则,即,据此解答即可.(1)证明:,,,,又,,在和中,,.(2)解:如图,连接,猜想、、之间的数量关系为:.证明:在和中,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,又,,,由(1),可得,,,即,,在和中,,,又,,;(3)解:要使仍然成立,则,即,当时,仍然成立.【点睛】本题综合考查了全等三角形的性质和判定,此题是一道综合性比较强的题目,有一定的难度,能根据题意推出规律是解此题的关键.模型构建二一线三等角模型小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例题:(2022·全国·八年级专题练习)如图,在中,,点D在线段BC上运动(D不与B、C重合),连接AD,作,DE交...