小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06模型构建专题:全等三角形中的常见解题模型模型构建一四边形中构造全等三角形解题模型构建二一线三等角模型模型构建三三垂直模型模型构建四倍长中线模型模型构建一四边形中构造全等三角形解题例题:(2021·天津·耀华中学八年级期中)如图,在四边形ABCD中,AB=CB,AD=CD.求证∠C=∠A.【变式训练】1.(2022·山东济宁·八年级期末)如图,在四边形ABCD中,于点B,于点D,点E,F分别在AB,AD上,,.(1)若,,求四边形AECF的面积;(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想.2.(2022·福建·漳州实验中学七年级阶段练习)在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,典型例题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?模型构建二一线三等角模型例题:(2022·全国·八年级专题练习)如图,在中,,点D在线段BC上运动(D不与B、C重合),连接AD,作,DE交线段AC于E.(1)点D从B向C运动时,逐渐变__________(填“大”或“小”),但与的度数和始终是__________度.(2)当DC的长度是多少时,,并说明理由.【变式训练】1.(2022·全国·八年级)如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comDE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).2.(2021·全国·八年级专题练习)如图1,中,.点、、分别是、、边上的点,.(1)若,求证:;(2)若,,,求的长:(3)把(1)中的条件和结论反过来,即:若,则;这个命题是否成立?若成立,请证明:若不成立,请说明理由.3.(2022·全国·八年级)(1)如图①,点B、C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.(2)应用:如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上.∠1=∠2=∠BAC,若△ABC的面积为15,求△ABE与△CDF的面积之和.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.(2022·河南郑州·七年级期末)在直线上依次取互不重合的三个点,在直线上方有,且满足.(1)如图1,当时,猜想线段之间的数量关系是____________;(2)如图2,当时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在中,是钝角,,,直线与的延长线交于点,若,的面积是12,求与的面积之和.模型构建三三垂直模型小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例题:(2021·福建·武夷山市第二中学八年级期中)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.(1)求证:△BCE≌△CAD;(2)若AD=12,BE=5,求ED的长.【变式训练】1.(2021·天津·八年级期中)在△BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD⊥AE于点D,CE⊥AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.2.(2022·广东佛山·七年级阶段练习)在△ABC中,∠BAC=90°,AC=AB,直线MN经过点A,且CD⊥MN于D,BE⊥MN于E.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)当直线MN绕点A旋转到图1的位置时,度;(2)求证:...