小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题07难点探究专题:全等三角形中的动态问题考点一利用全等三角形中的动点求时间问题(利用分类讨论思想)考点二利用全等三角形中的动点求线段长问题考点三利用全等三角形中的动点求线段长最小值问题考点四利用全等三角形中的动点综合问题考点一利用全等三角形中的动点求时间问题(利用分类讨论思想)例题:(2021·山东临沂·八年级期中)如图,,垂足为点A,射线,垂足为点B,,.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持.若点E的运动时间为,则当________个秒时,与全等.【变式训练】(2021·全国·七年级专题练习)已知:如图,在长方形中,延长到点,使,连接,动点从点出发,以每秒2个单位长度的速度沿向终点运动,设点的运动时间为秒,当的值为_______时,和全等.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点二利用全等三角形中的动点求线段长问题例题:(2019·江苏·宜兴市周铁中学八年级阶段练习)已知:如图,∠B=90°AB∥DF,AB=3cm,BD=8cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE,若AC=CE,则DE的长为______.【变式训练】(2020·江苏·泰州中学附属初中八年级阶段练习)如图,△ABC中,点D在边BC上,DE⊥AB于E,DH⊥AC于H,且满足DE=DH,F为AE的中点,G为直线AC上一动点,满足DG=DF,若AE=4cm,则AG=_____cm.考点三利用全等三角形中的动点求线段长最小值问题例题:(2021·重庆八中八年级开学考试)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为________.【变式训练】(2019·湖北·武汉大学附属外语学校八年级阶段练习)△ABC是边长为2的等边三角形,点P为直线BC上的动点,把线段AP绕A点逆时针旋转60°至AE,O为AB边上一动点,则OE的最小值为____.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点四利用全等三角形中的动点综合问题例题:(2022·辽宁葫芦岛·八年级期末)如图,在中,.点D是直线上一动点(点D不与点B,C重合),,连接.(1)如图1,当点D在线段上时,直接写出与之间的数量关系;(2)如图2,当点D在边的延长线上时,请探究线段与之间存在怎样的数量关系?并说明理由;(3)如图3,若点D在边的延长线上,且点A,E分别在直线的两侧,其他条件不变,若,直接写出的长度.【变式训练】(2022·辽宁葫芦岛·八年级期末)如图①,点C在线段AB上(点C不与A,B重合),分别以AC,BC为边在AB同侧作等边△ACD和等边△BCE,连接AE,BD交于点P.(1)观察猜想:1.AE与BD的数量关系为______;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.∠APD的度数为______;(2)数学思考:如图②,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.一、选择题1.(2022·福建漳州·八年级期末)已知点A为线段BC上方的一动点,且满足AC-AB=3,BC=8,若AD平分∠BAC,且CD⊥AD于点D,则S△BDC的最大值为()A.24B.12C.6D.32.(2020·山东·鲁村中学八年级阶段练习)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′的最小值为()A.1.6B.2.4C.2D.23.(2022·全国·八年级课时练习)如图,在中,,,,平分交于D点,E,F分别是,上的动点,则的最小值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.3D.二、填空题4.(2022·全国·八年级)如图,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=________时,形成的Rt△ABP与Rt△PCD全等.5.(2022·河南漯河·八年级期末)如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为__.6.(2020·浙江宁波·八年级专题练...