人教八年级数学上册 【能力培优】13.3等腰三角形 13.4课题学习 最短路径问题(含答案).doc本文件免费下载 【共7页】

人教八年级数学上册 【能力培优】13.3等腰三角形 13.4课题学习  最短路径问题(含答案).doc
人教八年级数学上册 【能力培优】13.3等腰三角形 13.4课题学习  最短路径问题(含答案).doc
人教八年级数学上册 【能力培优】13.3等腰三角形 13.4课题学习  最短路径问题(含答案).doc
13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DEBC∥,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+EFD=120°∠,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DEBC⊥,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且ODAB∥,OEAC∥.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和CB.F和EC.D和CD.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给、两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小?(保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质[来源:www.shulihua.netwww.shulihua.net]在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
初中八年级上册数学11.1.2 三角形高、中线与角平分线-2021-2022学年册分层练习(人教版)(原卷版).docx
初中八年级上册数学11.1.2 三角形高、中线与角平分线-2021-2022学年册分层练习(人教版)(原卷版).docx
免费
3下载
初中八年级上册数学末数学试卷02.doc
初中八年级上册数学末数学试卷02.doc
免费
21下载
初中八年级上册数学第11章 三角形【B卷】(原卷版).docx
初中八年级上册数学第11章 三角形【B卷】(原卷版).docx
免费
9下载
人教八年级数学下册 专题01 勾股定理(五大类型)(题型专练)(原卷版).docx
人教八年级数学下册 专题01 勾股定理(五大类型)(题型专练)(原卷版).docx
免费
0下载
八年级数学上册 同步练习专题13.3 等腰三角形+专题13.4 最短路径问题(教师版).docx
八年级数学上册 同步练习专题13.3 等腰三角形+专题13.4 最短路径问题(教师版).docx
免费
16下载
数学 八年级秋季班-第4讲:一元二次方程的概念及特殊的一元二次方程的解法.docx
数学 八年级秋季班-第4讲:一元二次方程的概念及特殊的一元二次方程的解法.docx
免费
3下载
初中八年级数学13.3.2 第1课时 等边三角形的性质与判定精选练习2.doc
初中八年级数学13.3.2 第1课时 等边三角形的性质与判定精选练习2.doc
免费
1下载
初中八年级上册数学11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
初中八年级上册数学11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
免费
14下载
18.1 平行四边形(解析版)-2020-2021学年度八年级数学下册精讲精练(人教版).docx
18.1 平行四边形(解析版)-2020-2021学年度八年级数学下册精讲精练(人教版).docx
免费
29下载
初中八年级上册数学15.1.1 从分数到分式-(解析版).doc
初中八年级上册数学15.1.1 从分数到分式-(解析版).doc
免费
27下载
人教八年级数学下册 专题05 勾股定理的逆定理(原卷版)(重点突围).docx
人教八年级数学下册 专题05 勾股定理的逆定理(原卷版)(重点突围).docx
免费
0下载
八年级下册数学 勾股定理应用.doc
八年级下册数学 勾股定理应用.doc
免费
1下载
初中八年级上册数学14.2.2完全平方公式(解析版).doc
初中八年级上册数学14.2.2完全平方公式(解析版).doc
免费
7下载
初中八年级数学上册第11章《三角形》全章检测题(含答案).doc
初中八年级数学上册第11章《三角形》全章检测题(含答案).doc
免费
2下载
人教八年级数学下册 专题40 一次函数的应用之最大利润问题(解析版).docx
人教八年级数学下册 专题40 一次函数的应用之最大利润问题(解析版).docx
免费
0下载
初中八年级数学【推荐】14.1.2幂的乘方-同步练习(1).doc
初中八年级数学【推荐】14.1.2幂的乘方-同步练习(1).doc
免费
0下载
人教八年级数学上册 专题01 一线三等角模型(解析版).docx
人教八年级数学上册 专题01 一线三等角模型(解析版).docx
免费
0下载
人教八年级数学上册 期末培优检测(二)(期末真题精选)(原卷版).docx
人教八年级数学上册 期末培优检测(二)(期末真题精选)(原卷版).docx
免费
0下载
人教八年级数学下册 专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)-2023复习备考(原卷版)【人教版】.docx
人教八年级数学下册 专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)-2023复习备考(原卷版)【人教版】.docx
免费
0下载
人教八年级数学下册 《勾股定理》同步练习4.doc
人教八年级数学下册 《勾股定理》同步练习4.doc
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群