人教八年级数学上册 专项05 一线三等角模型的综合应用(原卷版).docx本文件免费下载 【共11页】

人教八年级数学上册 专项05 一线三等角模型的综合应用(原卷版).docx
人教八年级数学上册 专项05 一线三等角模型的综合应用(原卷版).docx
人教八年级数学上册 专项05 一线三等角模型的综合应用(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专项05一线三等角模型的综合应用模型一一线三垂直全等模型如图一,∠D=∠BCA=∠E=90°,BC=AC。结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。结论:△BEC≌△CDACDEBA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。【类型一:标准“K”型图】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【变式1-1】如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【类型二:做辅助线构造“K”型图】【典例2】如图,△ABC为等腰直角三角形,∠ABC=90°,△ABD为等腰三角形,AD=AB=BC,E为DB延长线上一点,∠BAD=2∠CAE.(1)若∠CAE=20°,求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a,BE=b,CE=c.则△ABC的面积为.(用含a,b,c的式子表示)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【类型三:“K”型图与平面直角坐标综合】【典例3】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式3】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【类型四:特殊“K”型图】【典例4】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式4】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
初中八年级上册数学11.1.2 三角形高、中线与角平分线-2021-2022学年册分层练习(人教版)(原卷版).docx
初中八年级上册数学11.1.2 三角形高、中线与角平分线-2021-2022学年册分层练习(人教版)(原卷版).docx
免费
3下载
初中八年级上册数学末数学试卷02.doc
初中八年级上册数学末数学试卷02.doc
免费
21下载
初中八年级上册数学第11章 三角形【B卷】(原卷版).docx
初中八年级上册数学第11章 三角形【B卷】(原卷版).docx
免费
9下载
人教八年级数学下册 专题01 勾股定理(五大类型)(题型专练)(原卷版).docx
人教八年级数学下册 专题01 勾股定理(五大类型)(题型专练)(原卷版).docx
免费
0下载
八年级数学上册 同步练习专题13.3 等腰三角形+专题13.4 最短路径问题(教师版).docx
八年级数学上册 同步练习专题13.3 等腰三角形+专题13.4 最短路径问题(教师版).docx
免费
16下载
数学 八年级秋季班-第4讲:一元二次方程的概念及特殊的一元二次方程的解法.docx
数学 八年级秋季班-第4讲:一元二次方程的概念及特殊的一元二次方程的解法.docx
免费
3下载
初中八年级数学13.3.2 第1课时 等边三角形的性质与判定精选练习2.doc
初中八年级数学13.3.2 第1课时 等边三角形的性质与判定精选练习2.doc
免费
1下载
初中八年级上册数学11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
初中八年级上册数学11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
免费
14下载
18.1 平行四边形(解析版)-2020-2021学年度八年级数学下册精讲精练(人教版).docx
18.1 平行四边形(解析版)-2020-2021学年度八年级数学下册精讲精练(人教版).docx
免费
29下载
初中八年级上册数学15.1.1 从分数到分式-(解析版).doc
初中八年级上册数学15.1.1 从分数到分式-(解析版).doc
免费
27下载
人教八年级数学下册 专题05 勾股定理的逆定理(原卷版)(重点突围).docx
人教八年级数学下册 专题05 勾股定理的逆定理(原卷版)(重点突围).docx
免费
0下载
八年级下册数学 勾股定理应用.doc
八年级下册数学 勾股定理应用.doc
免费
1下载
初中八年级上册数学14.2.2完全平方公式(解析版).doc
初中八年级上册数学14.2.2完全平方公式(解析版).doc
免费
7下载
初中八年级数学上册第11章《三角形》全章检测题(含答案).doc
初中八年级数学上册第11章《三角形》全章检测题(含答案).doc
免费
2下载
人教八年级数学下册 专题40 一次函数的应用之最大利润问题(解析版).docx
人教八年级数学下册 专题40 一次函数的应用之最大利润问题(解析版).docx
免费
0下载
初中八年级数学【推荐】14.1.2幂的乘方-同步练习(1).doc
初中八年级数学【推荐】14.1.2幂的乘方-同步练习(1).doc
免费
0下载
人教八年级数学上册 专题01 一线三等角模型(解析版).docx
人教八年级数学上册 专题01 一线三等角模型(解析版).docx
免费
0下载
人教八年级数学上册 期末培优检测(二)(期末真题精选)(原卷版).docx
人教八年级数学上册 期末培优检测(二)(期末真题精选)(原卷版).docx
免费
0下载
人教八年级数学下册 专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)-2023复习备考(原卷版)【人教版】.docx
人教八年级数学下册 专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)-2023复习备考(原卷版)【人教版】.docx
免费
0下载
人教八年级数学下册 《勾股定理》同步练习4.doc
人教八年级数学下册 《勾股定理》同步练习4.doc
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群