小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专项06手拉手综合应用应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;②作辅助线构造手拉手模型,难度比较大。【类型一:等边三角形中的手拉手模型】【典例1】阅读与理解:如图1,等边△BDE按如图所示方式设置.操作与证明:(1)操作:固定等边△ABC,将△BDE绕点B按逆时针方向旋转120°,连接AD,CE,如图2;在图2中,请直接写出线段CE与AD之间具有怎样的大小关系.(2)操作:若将图1中的△BDE,绕点B按逆时针方向旋转任意一个角度α(60°<α<180°),连接AD,CE,AD与CE相交于点M,连BM,如图3;在图3中线段CE与AD之间具有怎样的大小关系?∠EMD的度数是多少?证明你的结论.猜想与发现:(3)根据上面的操作过程,请你猜想在旋转过程中,∠DMB的度数大小是否会随着变化而变化?请证明你的结论.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式1-1】如图,△ABC和△DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P.(1)求证:BE=AD.(2)求∠APB的度数.【变式1-2】(1)问题发现:如图①,△ABC和△EDC都是等边三角形,点B、D、E在同一条直线上,连接AE.①∠AEC的度数为;②线段AE、BD之间的数量关系为;(2)拓展探究:如图②,△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°,点B、D、E在同一条直线上,CM为△EDC中DE边上的高,连接AE,试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;(3)解决问题:如图③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,点B、D,E在同一条直线上,请直接写出∠EAB+∠ECB的度数.【类型二:等腰三角形的手拉手模型】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【典例2】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,∠BAC=90°,①求证:BD=CE;②∠BCE=;(2)设∠BCE=a,∠BAC=β,①如图2,当点D在线段BC上移动,求证α+β=180°;②当点D在射线BC的反向延长线上移动,则a、β之间有怎样的数量关系?请直接写出你的结论.【变式2-1】如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.证明:(1)BD=CE;(2)BD⊥CE.【变式2-2】如图,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点,连接小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comAD,以AD为直角边作等腰直角三角形ADF.(1)如图1,若当点D在线段BC上时(不与点B、C重合),证明:△ACF≌△ABD;(2)如图2,当点D在线段BC的延长线上时,试猜想CF与BD的数量关系和位置关系,并说明理由.【类型三:直角三角形中的手拉手模型】【典例3】△ABC与△BDE均为等腰直角三角形,∠ABC=∠DBE=90°.(1)如图1,当D,B,C在同一直线时,CE的延长线与AD交于点F.求证:∠CFA=90°;(2)当△ABC与△BDE的位置如图2时,CE的延长线与AD交于点F,猜想∠CFA的大小并证明你的结论;(3)如图3,当A,E,D在同一直线时(A,D在点E的异侧),CE与AB交于点G,∠BAD=∠ACE,求证:BG+AB=AC.【变式3-1】如图:已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作△ADE,使∠DAE=90°,AD=AE,连接小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comCE.发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为BD⊥CE,并猜想BC和CE、CD之间的数量关系:.(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系;BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;【类型四:作辅助线构造手拉手模型】【典例4】在△ABC中,AB=AC,∠ABC=α,点D是直线BC上一点,点C关于射线AD的对称点为点E.作直线BE交射线AD于点F.连接CF.(1)如图...