人教八年级数学上册 专题01模型方法课之倍长中线法重点练(原卷版)(人教版).docx本文件免费下载 【共11页】

人教八年级数学上册 专题01模型方法课之倍长中线法重点练(原卷版)(人教版).docx
人教八年级数学上册 专题01模型方法课之倍长中线法重点练(原卷版)(人教版).docx
人教八年级数学上册 专题01模型方法课之倍长中线法重点练(原卷版)(人教版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题01模型方法课之倍长中线法重点练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是()A.1<AD<6B.1<AD<4C.2<AD<8D.2<AD<42.如图,在中,为的中点,若.则的长不可能是()A.5B.7C.8D.93.如图,在四边形中,,,,,,点是的中点,则的长为().A.2B.C.D.3二、填空题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.如图,在中,是边上的中线,,,,则_______.5.如图,平行四边形ABCD,点F是BC上的一点,连接AF,∠FAD=60°,AE平分∠FAD,交CD于点E,且点E是CD的中点,连接EF,已知AD=5,CF=3,则EF=__.三、解答题6.在ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DFDE⊥,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.7.如图,已知AD是的中线,过点B作BEAD⊥,垂足为E.若BE=6,求点C到AD的距离.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.如图,在△ABC中,AD是BC边上的中线.(1)如果,,求证:△ABC是直角三角形.(2)如果,,,,求BC的长.9.如图,AB=AE,ABAE⊥,AD=AC,DE=2AM,点M为BC的中点,连接AM.求证:ADAC⊥10.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.(探究与发现)(1)如图1,AD是的中线,延长AD至点E,使,连接BE,证明:.(理解与应用)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)如图2,EP是的中线,若,,设,则x的取值范围是________.(3)如图3,AD是的中线,E、F分别在AB、AC上,且,求证:.11.阅读下面材料:数学课上,老师给出了如下问题:如图,AD为△ABC中线,点E在AC上,BE交AD于点F,AE=EF.求证:AC=BF.经过讨论,同学们得到以下思路:如图①,添加辅助线后依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.完成下面问题:(1)这一思路的辅助线的作法是:.(2)请你给出一种不同于以上思路的证明方法(要求:写出辅助线的作法,画出相应小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的图形,并写出证明过程).12.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,是的中线,求的取值范围.我们可以延长到点,使,连接,易证,所以.接下来,在中利用三角形的三边关系可求得的取值范围,从而得到中线的取值范围是;(2)如图2,是的中线,点在边上,交于点且,求证:;(3)如图3,在四边形中,,点是的中点,连接,且,试猜想线段之间满足的数量关系,并予以证明.13.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.14.如图,中,,,为中线,求中线的取值范围.15.阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线.求证:.智慧小组的证法如下:证明:如图2,延长至,使,小学、初中、高中各种试卷...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
初中八年级上册数学11.1.2 三角形高、中线与角平分线-2021-2022学年册分层练习(人教版)(原卷版).docx
初中八年级上册数学11.1.2 三角形高、中线与角平分线-2021-2022学年册分层练习(人教版)(原卷版).docx
免费
3下载
初中八年级上册数学末数学试卷02.doc
初中八年级上册数学末数学试卷02.doc
免费
21下载
初中八年级上册数学第11章 三角形【B卷】(原卷版).docx
初中八年级上册数学第11章 三角形【B卷】(原卷版).docx
免费
9下载
人教八年级数学下册 专题01 勾股定理(五大类型)(题型专练)(原卷版).docx
人教八年级数学下册 专题01 勾股定理(五大类型)(题型专练)(原卷版).docx
免费
0下载
八年级数学上册 同步练习专题13.3 等腰三角形+专题13.4 最短路径问题(教师版).docx
八年级数学上册 同步练习专题13.3 等腰三角形+专题13.4 最短路径问题(教师版).docx
免费
16下载
数学 八年级秋季班-第4讲:一元二次方程的概念及特殊的一元二次方程的解法.docx
数学 八年级秋季班-第4讲:一元二次方程的概念及特殊的一元二次方程的解法.docx
免费
3下载
初中八年级数学13.3.2 第1课时 等边三角形的性质与判定精选练习2.doc
初中八年级数学13.3.2 第1课时 等边三角形的性质与判定精选练习2.doc
免费
1下载
初中八年级上册数学11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
初中八年级上册数学11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
免费
14下载
18.1 平行四边形(解析版)-2020-2021学年度八年级数学下册精讲精练(人教版).docx
18.1 平行四边形(解析版)-2020-2021学年度八年级数学下册精讲精练(人教版).docx
免费
29下载
初中八年级上册数学15.1.1 从分数到分式-(解析版).doc
初中八年级上册数学15.1.1 从分数到分式-(解析版).doc
免费
27下载
人教八年级数学下册 专题05 勾股定理的逆定理(原卷版)(重点突围).docx
人教八年级数学下册 专题05 勾股定理的逆定理(原卷版)(重点突围).docx
免费
0下载
八年级下册数学 勾股定理应用.doc
八年级下册数学 勾股定理应用.doc
免费
1下载
初中八年级上册数学14.2.2完全平方公式(解析版).doc
初中八年级上册数学14.2.2完全平方公式(解析版).doc
免费
7下载
初中八年级数学上册第11章《三角形》全章检测题(含答案).doc
初中八年级数学上册第11章《三角形》全章检测题(含答案).doc
免费
2下载
人教八年级数学下册 专题40 一次函数的应用之最大利润问题(解析版).docx
人教八年级数学下册 专题40 一次函数的应用之最大利润问题(解析版).docx
免费
0下载
初中八年级数学【推荐】14.1.2幂的乘方-同步练习(1).doc
初中八年级数学【推荐】14.1.2幂的乘方-同步练习(1).doc
免费
0下载
人教八年级数学上册 专题01 一线三等角模型(解析版).docx
人教八年级数学上册 专题01 一线三等角模型(解析版).docx
免费
0下载
人教八年级数学上册 期末培优检测(二)(期末真题精选)(原卷版).docx
人教八年级数学上册 期末培优检测(二)(期末真题精选)(原卷版).docx
免费
0下载
人教八年级数学下册 专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)-2023复习备考(原卷版)【人教版】.docx
人教八年级数学下册 专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)-2023复习备考(原卷版)【人教版】.docx
免费
0下载
人教八年级数学下册 《勾股定理》同步练习4.doc
人教八年级数学下册 《勾股定理》同步练习4.doc
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群