小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题7.6坐标与新定义问题大题提升训练(重难点培优30题)班级:___________________姓名:_________________得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022秋•埇桥区期中)已知当m、n都是实数,且满足2m=6+n,则称点A(m−1,n2)为“智慧点”.(1)判断点P(4,10)是否为“智慧点”,并说明理由.(2)若点M(a,12﹣a)是“智慧点”.请判断点M在第几象限?并说明理由.【分析】(1)根据P点坐标,代入(m−1,n2)中,求出m和n的值,然后代入2m,6+n检验等号是否成立即可;(2)直接利用“智慧点”的定义得出a的值进而得出答案.【解答】解:(1)点P不是“智慧点”,由题意得:m−1=4,n2=10,∴m=5,n=20,∴2m=2×5=10,6+n=6+20=26,∴2m≠6+n,∴点P(4,10)不是“智慧点”;(2)点M在第四象限,理由: 点M(a,12﹣a)是“智慧点”,∴m−1=a,n2=1−2a,∴m=a+1,n=24﹣a, 2n=6+n,∴2(a+1)=6+24﹣a,解得a=1,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴点M(1,﹣1),∴点M在第四象限.2.(2022春•镇巴县期末)已知a,b都是实数,设点P(a,b),若满足3a=2b+5,则称点P为“新奇点”.(1)判断点A(3,2)是否为“新奇点”,并说明理由;(2)若点M(m1﹣,3m+2)是“新奇点”,请判断点M在第几象限,并说明理由.【分析】(1)直接利用“新奇点”的定义得出a,b的值,进而得出答案;(2)直接利用“新奇点”的定义得出m的值,进而得出答案.【解答】解:(1)当A(3,2)时,3×3=9,2×2+5=4+5=9,所以3×3=2×2+5,所以A(3,2)是“新奇点”;(2)点M在第三象限,理由如下: 点M(m1﹣,3m+2)是“新奇点”,∴3(m1﹣)=2(3m+2)+5,解得m=﹣4,∴m1﹣=﹣5,3m+2=﹣10,∴点M在第三象限.3.(2021秋•漳州期末)在平面直角坐标系xOy中,给出如下定义:点A到x轴、y轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)求点A(﹣5,2)的“长距”;(2)若C(﹣1,k+3),D(4,4k3﹣)两点为“等距点”,求k的值.【分析】(1)即可“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解:(1)点A(﹣5,2)的“长距”为|5|﹣=5;(2)由题意可知,|k+3|=4或4k3﹣=±(k+3),解得k=1或k=﹣7(不合题意,舍去)或k=2或k=0(不合题意,舍去),∴k=1或k=2.4.(2022秋•渠县校级期中)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(其中a为常数),则称点Q是点P的“a级关联点”、例如,点P(1,4)的“3级关联点”为点Q(3×1+4,1+3×4),即点Q(7,13).在平面直角坐标系中,已知点A(﹣2,6)的“2级关联点”是点B,求点B的坐标;在平面直角坐标系中,已知点M(m,2m1﹣)的“3级关联点”是点N,且点N位于x轴上,求点N的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m,2m1﹣)的“3级关联点”是点N位于x轴上,即可求出N的坐标.【解答】解:(1) 点A(﹣2,6)的“2级关联点”是点B,故点B的坐标为(2×(﹣2)+6,﹣2+2×6)∴B的坐标(2,10);(2) 点M(m,2m1﹣)的“3级关联点”为N(3m+2m1﹣,m+3(2m1﹣)),当N位于x轴上时,m+3(2m1﹣)=0,解得m¿37,∴3m+2m1﹣¿87,∴点N的坐标为(87,0).5.(2022秋•天长市月考)在平面直角坐标系中,对于点P、Q两点给出如下定义:若点P到x,y轴的距离的较大值等于点Q到x,y轴的...