2017年北京市高考数学试卷(理科)一、选择题.(每小题5分)1.(5分)若集合A={x|2﹣<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|2﹣<x<﹣1}B.{x|2﹣<x<3}C.{x|1﹣<x<1}D.{x|1<x<3}2.(5分)若复数(1i﹣)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1B.3C.5D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的(小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.28.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=.10.(5分)若等差数列{an}和等比数列{bn}满足a1=b1=1﹣,a4=b4=8,则=.11.(5分)在极坐标系中,点A在圆ρ22ρcosθ4ρsinθ﹣﹣+4=0上,点P的坐标小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com为(1,0),则|AP|的最小值为.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(αβ﹣)=.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.16.(14分)如图,在四棱锥PABCD﹣中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角BPDA﹣﹣的大小;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)求直线MC与平面BDP所成角的正弦值.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19.(13分)已知函数f(x)=excosxx﹣.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com20.(13分)设{an}和{bn}是两个等差数列,记cn=max{b1a﹣1n,b2﹣a2n,…,bna﹣nn}(n=1,2,3,…),其中m...