2014年湖北省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}2.(5分)i为虚数单位,()2=()A.1B.﹣1C.iD.﹣i3.(5分)命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠xB.∀x∈R,x2=xC.∃x∉R,x2≠xD.∃x∈R,x2=x4.(5分)若变量x,y满足约束条件,则2x+y的最大值是()A.2B.4C.7D.85.(5分)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p26.(5分)根据如下样本数据:x345678y4.02.5﹣0.50.5﹣2.0﹣3.0得到了回归方程=x+,则()A.>0,<0B.>0,>0C.<0,<0D.<0,>07.(5分)在如图所示的空间直角坐标系Oxyz﹣中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.①和②B.③和①C.④和③D.④和②8.(5分)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线﹣=1的公共点的个数为()A.0B.1C.2D.39.(5分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x23x﹣,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3}B.{3﹣,﹣1,1,3}C.{2﹣,1,3}D.{2﹣﹣,1,3}10.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.二、填空题:本大题共7小题,每小题5分,共35分.11.(5分)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com备生产,则乙设备生产的产品总数为件.12.(5分)若向量=(1,﹣3),||=||,•=0,则||=.13.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B=.14.(5分)阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为.15.(5分)如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若∀x∈R,f(x)>f(x1﹣),则正实数a的取值范围为.16.(5分)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(Ⅰ)如果不限定车型,l=6.05,则最大车流量为辆/小时;(Ⅱ)如果限定车型,l=5,则最大车流量比(Ⅰ)中的最大车流量增加小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com辆/小时.17.(5分)已知圆O:x2+y2=1和点A(﹣2,0),若定点B(b,0)(b≠﹣2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则:(Ⅰ)b=;(Ⅱ)λ=.三、解答题18.(12分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣costsin﹣t,t∈[0,24).(Ⅰ)求实验室这一天上午8时的温度;(Ⅱ)求实验室这一天的最大温差.19.(12分)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.20.(1...