2013年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={1﹣,0,1},B={x|1﹣≤x<1},则A∩B=()A.{0}B.{1﹣,0}C.{0,1}D.{1﹣,0,1}2.(5分)在复平面内,复数(2i﹣)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.5.(5分)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=()A.ex+1B.ex1﹣C.ex﹣+1D.ex1﹣﹣6.(5分)若双曲线的离心率为,则其渐近线方程为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.y=±2xB.C.D.7.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.B.2C.D.8.(5分)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x02y﹣0=2,求得m的取值范围是()A.B.C.D.二、填空题共6小题,每小题5分,共30分.9.(5分)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于.10.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n项和Sn=.11.(5分)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD=,AB=.12.(5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.13.(5分)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com14.(5分)如图,在棱长为2的正方体ABCDA﹣1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.16.(13分)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com17.(14分)如图,在三棱柱ABCA﹣1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1BC﹣1B﹣1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.18.(13分)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.19.(14分)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.20.(13分)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2…的最小值记为Bn,dn=AnB﹣n.(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:dn=d﹣(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2013年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合...