2016年上海市高考数学试卷(理科).doc本文件免费下载 【共23页】

2016年上海市高考数学试卷(理科).doc
2016年上海市高考数学试卷(理科).doc
2016年上海市高考数学试卷(理科).doc
2016年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)设x∈R,则不等式|x3﹣|<1的解集为.2.(4分)设z=,其中i为虚数单位,则Imz=.3.(4分)已知平行直线l1:2x+y1=0﹣,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是(米).5.(4分)已知点(3,9)在函数f(x)=1+ax的图象上,则f(x)的反函数f﹣1(x)=.6.(4分)在正四棱柱ABCDA﹣1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于.7.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.8.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.9.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.10.(4分)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为.11.(4分)无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为.12.(4分)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.14.(4分)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点Ai,Aj,点P满足++=,则点P落在第一象限的概率是.二、选择题(5×4=20分)15.(5分)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=65cosθ﹣D.ρ=65sinθ﹣17.(5分)已知无穷等比数列{an}的公比为q,前n项和为Sn,且=S,下列条件中,使得2Sn<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8D.a1<0,﹣0.8<q<﹣0.718.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、解答题(74分)19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥CO﹣1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com21.(14分)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)•=0,求l的斜率.22.(16分)已...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年四川省高考数学试卷(理科)往年高考真题.doc
2014年四川省高考数学试卷(理科)往年高考真题.doc
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练13.docx
2023《微专题·小练习》·数学·文科·L-2专练13.docx
免费
22下载
2025版新高考版 数学考点清单+题型清单08专题八立体几何与空间向量1_8.5  空间角与距离空间向量及其应用讲解册.pdf
2025版新高考版 数学考点清单+题型清单08专题八立体几何与空间向量1_8.5 空间角与距离空间向量及其应用讲解册.pdf
免费
2下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 11.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 11.docx
免费
1下载
2018年高考数学真题(理科)(新课标Ⅱ)(解析版).doc
2018年高考数学真题(理科)(新课标Ⅱ)(解析版).doc
免费
23下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(五十四).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(五十四).docx
免费
29下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(四十八).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(四十八).docx
免费
30下载
高中2023《微专题·小练习》·数学·文科·L-2专练28.docx
高中2023《微专题·小练习》·数学·文科·L-2专练28.docx
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练28.docx
2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
18下载
高考复习专项练习一轮数学课时规范练52 随机事件与概率、古典概型.docx
高考复习专项练习一轮数学课时规范练52 随机事件与概率、古典概型.docx
免费
27下载
2019年北京市高考数学试卷(文科)(解析版).doc
2019年北京市高考数学试卷(文科)(解析版).doc
免费
0下载
二轮专项分层特训卷··高三数学·理科热点(四).doc
二轮专项分层特训卷··高三数学·理科热点(四).doc
免费
23下载
【高考数学】备战2024年(新高考专用)专题01 集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题01 集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(二十四) 用坐标方法解决几何问题.docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(二十四) 用坐标方法解决几何问题.docx
免费
12下载
高中2024版考评特训卷·数学【新教材】滚动过关检测二.docx
高中2024版考评特训卷·数学【新教材】滚动过关检测二.docx
免费
0下载
2024年高考押题预测卷数学(全国卷理科02)(参考答案).docx
2024年高考押题预测卷数学(全国卷理科02)(参考答案).docx
免费
26下载
2022年高考全国乙卷数学(文)真题(原卷版).docx
2022年高考全国乙卷数学(文)真题(原卷版).docx
免费
27下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 18.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 18.docx
免费
12下载
2023《微专题·小练习》·数学·文科·L-2专练48.docx
2023《微专题·小练习》·数学·文科·L-2专练48.docx
免费
8下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 53.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 53.docx
免费
24下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群