2015年山东省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)已知集合A={x|x24x﹣+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)2.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1i﹣B.1+iC.﹣1i﹣D.﹣1+i3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2D.a25.(5分)不等式|x1﹣|﹣|x5﹣|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3B.2C.﹣2D.﹣37.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μσ﹣<ξ<μ+σ)=68.26%,P(μ2σ﹣<ξ<μ+2σ)=95.44%)A.4.56%B.13.59%C.27.18%D.31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y2﹣)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)执行右边的程序框图,输出的T的值为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[1﹣,0],则a+b=.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)设f(x)=sinxcosxcos﹣2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.17.(12分)如图,在三棱台DEFABC﹣中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)设函数f(x)=ln(x+1)+a(x2x﹣),其中a∈R,(Ⅰ)讨论函数f(...