期末考试压轴题考点训练(四)1.当______时,关于x的分式方程无解.2.如图,等边三角形ABC中,D、E分别为AB、BC边上的点,,AE与CD交于点F,于点G,则的度数为________.3.如图,在△ABC中,,AC=8cm,BC=10cm.点C在直线l上,动点P从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为____秒时,△PMC与△QNC全等.4.如图,矩形中,,,将矩形绕点顺时针旋转得到矩形,边与交于点,延长交于点,若,则的长为______.5.如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.6.如图,平分,,的延长线交于点,若,则的度数为__________.7.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为,需香樟数量之比为,并且甲、乙两山需红枫数量之比为.在实际购买时,香樟的价格比预算低,红枫的价格比预算高,香樟购买数量减少了,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.8.如图,△ABC的边CB关于CA的对称线段是CB',边CA关于CB的对称线段是CA',连结BB',若点A'落在BB'所在的直线上,∠ABB'=56°,则∠ACB=___度.9.如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将沿PF折叠,使点C落在点E处.若,当点E到点A的距离最大时,_____.10.把一张长方形纸条ABCD沿EF折叠成图①,再沿HF折叠成图②,若∠DEF=β(0°<β<90°),用β表示∠C''FE,则∠C''FE=_______.11.已知,则______.12.综合与探究:如图1所示的是由两块三角板组成的图形,其中在中,,,在中,,,点B,E,D在同一条直线上,AC与BD交于点F,连接CD并延长,交BA的延长线于点G.(1)当时,试用含的代数式表示∠BAE的度数.(2)当时,试探究BC与BG的数量关系,并说明理由.(3)过点C作,交BD的延长线于点H,如图2所示,在满足(2)的情况下,求∠DCH的度数,并直接写出与∠DCH相等的角(除∠G外,写两个即可).13.两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,则△ABD△≌ACE.(1)请证明图1的结论成立;(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,求∠BOC的度数;(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.14.在落实“精准扶贫”战略中,三峡库区某驻村干部组织村民依托著名电商平台“拼多多”组建了某土特产专卖店,专门将进货自本地各家各户的A、B两款商品销售到全国各地.2020年10月份,该专卖店第一次购进A商品40件,B商品60件,进价合计8400元;第二次购进A商品50件,B商品30件,进价合计6900元.(1)求该专卖店10月份A、B两款商品进货单价分别为多少元?(2)10月底,该专卖店顺利将两次购进的商品全部售出.由于季节原因,B商品缺货,该专卖店在11月份和12月份都只能销售A商品,且A商品11月份的进货单价比10月份上涨了m元,进价合计49000元;12月份的进货单价又比11月份上涨了0.5m元,进价合计61200元,12月份的进货数量是11月份进货数量的1.2倍.为了尽快回笼资金,A商品在11月份和12月份的销售过程中维持每件150元的售价不变,到2021年元旦节,该专卖店把剩下的50件A商品打八折促销,很快便售完,求该专卖店在A商品进货单价上涨后的销售总金额为多少元?15.如图1,含角的直角三角板与含角的直角三角板的斜边在同一直线上,D为的中点,将直角三角板绕点D按逆时针方向旋转,在旋转过程中:(1)如图2,当________时,;当______时,;(2)如图③,当直角三角板的边、分别交、的延长线于点M、N时;①与度数的和是否变化?若不变,求出与度数的和;若变化,请说明理由;②若使得,求出、的度数,并直接写出此时的度数;③若使得,求的度数范围.