专题07因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:=______.【变式训练1】因式分解:=________________.【变式训练2】因式分解:_________.【变式训练3】分解因式:a43﹣a24﹣=_____.【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,,分别对应下列六个字:抗,胜,必,利,我,疫.现将因式分解,结果呈现的密码信息可能是()A.抗疫胜利B.抗疫必胜C.我必胜利D.我必抗疫题型二、十字相乘法例.将多项式因式分解,结果正确的是()A.B.C.D.【变式训练1】多项式可因式分解成,其中、、均为整数,求之值为何?()A.B.C.3D.12【变式训练2】分解因式:____.【变式训练3】因为,这说明多项式有一个因式为,我们把代入此多项式发现能使多项式的值为0.利用上述阅读材料求解:(1)若是多项式的一个因式,求的值;(2)若和是多项式的两个因式,试求,的值.(3)在(2)的条件下,把多项式因式分解.题型四、分组法例.分解因式:【变式训练1】已知,,则m与n的大小关系是()A.B.m>nC.D.m<n【变式训练2】分解因式:.【变式训练3】分解因式:__________.【变式训练4】阅读理解:把多项式分解因式.解法:观察上述因式分解的过程,回答下列问题:(1)分解因式:.(2)三边、、满足,判断的形状.题型四、添项、拆项法例.分解因式;.x3﹣3x2﹣6x+8=_______.【变式训练1】把多项式分解因式:x3﹣2x2+1=_________________.【变式训练2】因式分解:【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式可以用如下方法分解因式:①;又比如多项式可以这样分解:②;仿照以上方法,分解多项式的结果是______.题型五、换元法(整体思想)例.因式分解:【变式训练1】分解因式:【变式训练2】因式分解:(x2+4x)2(﹣x2+4x)20﹣.【变式训练3】因式分解:(1)(2)题型六、主元法例.分解因式:.【变式训练1】因式分解:(1)(2)(3)【变式训练2】因式分解:(1)(2)【变式训练3】因式分解:课后作业1.如果,那么的值为()A.B.C.1D.-12.如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M表示其底面积与侧面积的差,则M可因式分解为()A.B.C.D.3.已知,则______.4.分解因式:____________.5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:;(2)因式分解:;(3)△ABC三边a、b、c满足,判断△ABC的形状并说明理由.6.把下列各式因式分解:(1);(2).7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知的三边长为,,,且满足,请判断的形状.