专题06乘法公式压轴题的四种考法类型一、平方差公式与几何图形综合例1.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x3)(﹣x+3)(x2+9).【拓展】计算的结果为.【答案】探究:(1),;(2);应用:①12;②;拓展:.【详解】探究:(1)图①阴影部分的面积为两个正方形的面积差,即,图②的阴影部分为长为,宽为的矩形,则其面积为,故答案为:,;(2)由图①与图②的面积相等可得到乘法公式:,故答案为:;应用:①,故答案为:12;②原式,,;拓展:原式,,,,,.故答案是:.【变式训练1】如图,在边长为的正方形中,剪去一个边长为的小正方形(),将余下的部分拼成一个梯形,根据两个图形中阴影部分面积关系,解决下列问题:(1)如图①所示,阴影部分的面积为(写成平方差形式).(2)如图②所示,梯形的上底是,下底是,高是,根据梯形面积公式可以算出面积是(写成多项式乘法的形式).(3)根据前面两问,可以得到公式.(4)运用你所得到的公式计算:.【答案】(1);(2);(3);(4)2000.【详解】解:(1)大正方形的面积为:,小正方形的面积为:,∴阴影部分的面积为:;故答案为:;(2)由梯形的定义可知:上底是:,下底是:,高是:,∴梯形的面积为:;故答案为:;(3)由(1)(2)可知,;故答案为:;(4)===2000;【变式训练2】从边长为的正方形剪掉一个边长为的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______(请选择正确的一个).A.B.C.(2)若,,求的值;(3)计算:.【答案】(1)B;(2);(3)【详解】解:(1)根据阴影部分面积相等可得:,上述操作能验证的等式是B,故答案为:B;(2) , ∴(3)【变式训练3】工厂接到订单,需要边长为(a+3)和3的两种正方形卡纸.(1)仓库只有边长为(a+3)的正方形卡纸,现决定将部分边长为(a+3)的正方形纸片,按图甲所示裁剪得边长为3的正方形.①如图乙,求裁剪正方形后剩余部分的面积(用含a代数式来表示);②剩余部分沿虚线又剪拼成一个如图丙所示长方形(不重叠无缝隙),则拼成的长方形的边长多少?(用含a代数式来表示);(2)若将裁得正方形与原有正方形卡纸放入长方体盒子底部,按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),盒子底部中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2测得盒子底部长方形长比宽多3,则S2﹣S1的值为.【答案】(1)①裁剪正方形后剩余部分的面积=a2+6a;②拼成的长方形的边长分别为a和a+6;(2)9.【详解】(1)①裁剪正方形后剩余部分的面积=(a+3)23﹣2=(a+33)(﹣a+3+3)=a(a+6)=a2+6a;②拼成的长方形的宽是:a+33=﹣a,∴长为a+6,则拼成的长方形的边长分别为a和a+6;(2)设AB=x,则BC=x+3,∴图1中阴影部分的面积为S1=x(x+3)(﹣a+3)23﹣2+3(a+6﹣x3)﹣,图2中阴影部分的面积为S2=x(x+3)(﹣a+3)23﹣2+3(a+6﹣x),∴S2﹣S1的值=3(a+6﹣x)3(﹣a+6﹣x3)=3×3=9﹣.故答案为9.【变式训练4】(1)如图1所示,若大正方形的边长为,小正方形的边长为,则阴影部分的面积是______;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是_________;(2)由(1)可以得到一个乘法公式是________;(3)利用你得到的公式计算:.【答案】(1)a2-b2,(a+b)(a-b);(2)(a+b)(a-b)=a2-b2;(3)1【详解】解:(1)图①阴影部分的面积为:a2-b2,图②长方形的长为a+b,宽为a-b,所以面积为:(a+b)(a-b),故答案为:a2-b2,(a+b)(a-b);(2)由(1)可得:(a+b)(a-b)=a2-b2,故答案为:(a+b)(a-b)=a2-b2;(3)20212-2022×2020=20212-(2021+1)(2021-1)=20212-20212+1=1.类型二、完全平方公式变形例1.已知,求与的值.【答案】【详解】,,,,.例2已知,则________.【答案】6【详解】解: x2+y2+z2-4x+6y+2z+14=0,∴x2-4x+4+y2+6y+9+z...