期末考试不等式与不等式组压轴题考点训练(三)1.若实数a使得关于x的分式方程有非负整数解,并且使关于y的一元一次不等式组有且仅有4个整数解,则符合条件的所有整数a的个数为()A.1个B.2个C.3个D.4个【答案】D【分析】解不等式组,根据仅有4个整数解,求出的范围;解分式方程,根据的范围,确定符合条件的值即可.【详解】解:解得:仅有4个整数解,,,解得:方程有非负整数解,,且是2的倍数,,,,满足条件的整数为:个数为4个.故选D【点睛】本题考查了一元一次不等式组的解法、分式方程的解法等知识点,根据不等式组解的情况确定参数的范围是解题关键.2.关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.B.C.D.【答案】A【分析】此题可先根据一元一次不等式组解出x的取值范围,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【详解】解:由不等式,可得:,由不等式,可得:,由以上可得不等式组的解集为:,因为不等式组恰好只有四个整数解,即整数解为,所以可得:,解得:,故选A.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a的不等式是解答本题的关键.3.若关于x的不等式组最多有2个整数解,且关于y的一元一次方程的解为非正数,则符合条件的所有整数k的和为()A.13B.18C.21D.26【答案】B【分析】分别求出不等式组的解集,一元一次方程的解,根据题意,求出符合条件的所有整数k,再将它们相加,即可得出结果.【详解】解:由,可得:, 关于x的不等式组最多有2个整数解,∴或无解, 不等式组的整数解最多时为:1,2,∴,解得:;解,得:, 方程的解为非正数,∴,解得:,综上:,符合条件的的整数值为:,和为;故选B.【点睛】本题考查由不等式组的解集和方程的解的情况求参数的值.正确的求出不等式组的解集和方程的解,是解题的关键.4.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【答案】B【分析】首先确定不等式组的解集,先利用含a的式子表示,根据题意得到必定有整数解0,再根据恰有3个整数解分类讨论,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:解不等式①得,解不等式②得,由于不等式组有解,则,必定有整数解0, ,∴三个整数解不可能是.若三个整数解为,则不等式组无解;若三个整数解为0,1,2,则;解得.故选:B【点睛】本题考查不等式组的解法及整数解的确定.难度较大,理解题意,根据已知条件得到必定有整数解0,再分类讨论是解题关键.5.若整数a使关于x的不等式组至少有1个整数解,且使关于x,y的方程组的解为正整数,那么所有满足条件的a值之和为()A.﹣17B.﹣16C.﹣14D.﹣12【答案】B【分析】根据不等式组求出的范围,然后再根据关于,的方程组的解为正整数得到或或,从而确定所有满足条件的整数的值的和.【详解】不等式组整理得:,由不等式组至少有1个整数解,得到,解得:,解方程组,得,关于,的方程组的解为正整数,或或,解得或或,所有满足条件的整数的值的和是.故选:B.【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出的范围,本题属于中等题型.6.若存在一个整数m,使得关于x,y的方程组的解满足,且让不等式只有3个整数解,则满足条件的所有整数m的和是()A.12B.6C.D.【答案】D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出的取值范围,再进行求解即可.【详解】解:,,得:,解得,,得:,解得, ,∴,解得,解不等式,得:,解不等式,得:, 不等式组只有3个整数解,∴,解得,∴,∴符合条件的整数m的值的和为,故选:D.【点睛】本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.7.某公司结合养老与医疗打造了一款康养之城社区,看房当天为方便看房的客户,公司计划租用A、B、C三种类...