第八章二元一次方程组压轴题考点训练1.若方程组的解是,则方程组的解是()A.B.C.D.2.新冠状病毒传染性非常强,多是通过飞沫,接触,还有气溶胶传播。所以一定要做好个人防护,尽量少外出,更不要聚集,佩戴医用外科口罩是非常有效的个人防护。为了个人防护,小红用40元钱买了A,B两种型号的医用外科口罩(两种型号都买),A型每包6元,B型每包4元,在40元全部用尽的情况下,有几种购买方案()A.2种B.3种C.4种D.5种3.方程组中,若未知数x、y满足x-y>0,则m的取值范围是()A.m>1B.m<1C.m>-1D.m<-14.设,,…,是从1,0,-1这三个数取值的一列数,若++…+=69,,则,,…,中为0的个数是()A.173B.888C.957D.695.“今有四十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为.今有40只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,且恰好每个圈舍都能放满,求所需圈舍的间数.设所需大圈舍间,小圈舍间,则求得的结果有___________种.6.已知方程组的解是,则方程组的解是_______.7.小明问数学老师的年龄,数学老师微笑着说:“我像你这么大的时候,你刚好3岁;你到我这么大时,我就42岁了,”那么数学老师今年的年龄是______岁.8.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为则的值为________.9.年冬,重庆新冠疫情期间,某火锅店举办“云端火锅,共抗疫情”活动,将火锅底料及菜品打包成“便利火锅包”送至附近小区大门处,由居民自行前往提取.根据菜品种类分为A、、三类,三个品类成本价分别是元,元,元.且A类和类火锅的标价一样,该店对这三个品类全部打折销售.若三个品类的销量相同,则火锅店能获得的利润,此时A品类利润率为.若A、、三类销量之比是,则火锅店销售A、、类便利火锅包的总利润率为_______.(利润率)10.已知,,则______.11.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用180万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利6000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?12.我们知道,数轴上表示数a的点A和表示数b的点B之间的距离AB可以用来表示.例如:表示5和1在数轴上对应的两点之间的距离.(1)在数轴上,A、B两点表示的数分别为a、b,且a、b满足,则________,________,A、B两点之间的距离为________.(2)点M在数轴上,且表示的数为m,且,求m的值.(3)若点M、N在数轴上,且分别表示数m和n,且满足,,求M、N两点的距离.13.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的一个代数式的值.如以下问题:已知实数x、y满足,,求和的值.本题常规思路是将①,②联立组成方程组,解得、的值再代入欲求值的代数式得到答案.常规思路计算量比较大,其实本题还可以仔细观察两个方程未知数系数之间的关系,通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则______,______;(2)试说明在关于x、y的方程组中,不论a取什么实数,的值始终不变;(3)某班级组织活动购买小奖品,买3支铅笔、5块橡皮、1本笔记本共需21元,买4支铅笔、7块橡皮、1本笔记本共需28元,则购买10支铅笔、10块橡皮、10本笔记本共需多少元?14.如果一个三位数满足各数位上的数字都不为0,且百位数字比十位数字大1,则称这个数为“阶梯数”.若s,t都是“阶梯数”,将组成s的各数位上的数字中最大数字作为十位数字,组成t的各数位上的数字中最小数字作为个位数字,得到一个新两位数m叫做s,t的“萌数”,...