专题01相交线与平行线中的四种几何模型全攻略类型一、猪脚模型例.问题情境:如图①,直线,点E,F分别在直线AB,CD上.(1)猜想:若,,试猜想______°;(2)探究:在图①中探究,,之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若,,求的度数.【变式训练1】已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;(2)当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).【变式训练2】阅读下面内容,并解答问题.已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.(1)求证:;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为.②如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为.【变式训练3】如图:(1)如图1,,,,直接写出的度数.(2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.(3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.类型二、铅笔模型例.问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.()所以∠A+∠APE=180°,∠C+∠CPE=180°.()因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.【变式训练1】已知,直线ABCD∥(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.【变式训练2】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.思路点拨:小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC的度数;小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为°;问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.类型三、锄头模型ABCDP123例.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【变式训练1】(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由....