小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专练44直线与圆、圆与圆的位置关系[基础强化]一、选择题1.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但不过圆心C.相交过圆心D.相离2.已知圆C1:x2+y2=4,圆C2:x2+y2+6x-8y+16=0,则圆C1与圆C2的位置关系是()A.相离B.外切C.相交D.内切3.圆:x2+y2-2x-2y+1=0上的点到直线x-y=2距离的最大值是()A.1+B.2C.1+D.2+24.两圆C1:x2+y2-4x+2y+1=0与C2:x2+y2+4x-4y-1=0的公切线有()A.4条B.3条C.2条D.1条5.已知直线l:y=k(x+)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=()A.0B.C.或0D.或06.已知直线l经过点(0,1)且与圆(x-1)2+y2=4相交于A、B两点,若|AB|=2,则直线l的斜率k的值为()A.1B.-1或1C.0或1D.17.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为()A.2x-y-1=0B.2x+y-1=0C.2x-y+1=0D.2x+y+1=09.若直线l与曲线y=和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+二、填空题10.若圆x2+y2-4x-4y=0上至少有3个不同的点到直线l:y=kx的距离为,则直线l的斜率k的取值范围是________.11.[2023·新课标Ⅱ卷]已知直线x-my+1=0与⊙C:(x-1)2+y2=4交于A,B两点,写出满足“△ABC面积为”的m的一个值________.12.过点P(1,-3)作圆C:(x-4)2+(y-2)2=9的两条切线,切点分别为A,B,则切线方程为______________.[能力提升]13.(多选)[2021·新高考Ⅰ卷]已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则()A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3D.当∠PBA最大时,|PB|=314.[2023·新课标Ⅰ卷]过点(0,-2)与圆x2+y2-4x-1=0相切的两条直线的夹角为α,则sinα=()A.1B.C.D.15.[2022·新高考Ⅰ卷,14]写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.16.已知圆C1:x2+y2=4和圆C2:(x-2)2+(y-2)2=4,若点P(a,b)(a>0,b>0)在两圆的公共弦上,则+的最小值为________.