第1页共152页专题04二次函数的实际应用60题专练通用的解题思路:从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.压轴题预测1.(2024•北仑区一模)周末,小明和同学们一起去长江路地铁站坐地铁.在等车的过程中,他惊叹于地铁每次都能精准的停靠在停止线上.为什么每次地铁停靠都那么准呢?里面一定包含着数学知识!通过工作人员帮助,小明获得了地铁刹车开始的时间t与地铁到停止线的距离S之间的表格信息:t(秒)04812162024S(米)256196144100643616当小明拿到这些数据时,他作了如下的思考:(1)依据数学经验,小明需要将这些数据绘制在平面直角坐标系中,并用平滑的曲线进行连线,形成数据所生成的图象,请你在图中落实他的想法;(2)根据图象以及数据关系,它可能是我们所学习过的函数图象(选填“一次”、“二次”或“反比例”).请你选择合适的数据求出该函数的表达式;(3)地铁从开始刹车到下次启动一共用时60秒.求地铁的停靠时间.第2页共152页(停靠时间指的是地铁刹停后的静止时间)2.(2024•官渡区一模)“有一种叫云南的生活”融和了丰富的多元文化、多彩的自然风光和独特的民俗风情.在云南,风里有花香,舌尖亦能有花香.“鲜花饼”是云南有名的特产,南屏街某商店销售“鲜花饼”,进价为20元/盒,经市场调查发现:该鲜花饼的销售量y(盒)与销售价x(元/盒)之间的关系如图所示.规定售价不低于成本,不高于成本的2.5倍.(1)求y关于x的函数解析式;(2)求销售该鲜花饼获得的利润W的最大值.第3页共152页3.(2024•新吴区一模)天气渐热,某商家购进一种冰镇饮料,每瓶进价是4元,并规定每瓶售价不得少于6元,日销售量不低于40瓶.根据以往销售经验发现,当每瓶售价定为6元时,日销售量为60瓶,每瓶售价每提高1元,日销售量减少5瓶.设每瓶售价为x元,日销售量为p瓶.(1)当8x时,p;(2)当每瓶售价定为多少元时,日销售利润w(元)最大?最大利润是多少?(3)判断命题:“日销售额最大时,日销售利润不是最大”是命题(填“真”或“假”),并说明理由.4.(2024•滨海县校级模拟)综合与实践:问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价x与日销售量y情况,记录如下:售价(元/盆)日销售量(盆)A2050B3030C1854D2246E2638数据整理:(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆)第4页共152页日销售量(盆)模型建立(2)分析数据的变化规律,探究出日销售量y与售价x之间的关系式.拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中.①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?5.(2024•江阴市一模)某商店以30元/件的进价购进了某种商品,这种商品在60天内的日销售价(单位:元/件)与时间x(单位:天)之间的关系如表格所示:第x天(x为整数)日销售价(元/件)600.5x40日销售量y(单位:件)与时间x(单位:天)之间的函数表达式为,其中x为整数.(1)求第30天的销售利润;(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?日销售利润(日销售价进...