小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点04二次函数中的平移、翻折、对称、旋转、折叠问题目录重难点题型突破..................................................................................................................................2题型01二次函数平移问题........................................................................................................2题型02二次函数翻折问题........................................................................................................7题型03二次函数对称问题......................................................................................................11题型04二次函数旋转问题......................................................................................................16题型05二次函数折叠问题......................................................................................................19小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点题型突破题型01二次函数平移问题1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+cy=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+cy=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+ny=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-ny=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1.(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2−2ax−3(a≠0)与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P是线段BC上一点,如果∠PAC=45°,求点P的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D平移至点E处,过点E作EF⊥直线AP,垂足为点F,如果tan∠PEF=12,求平移后抛物线的表达式.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2023·广东湛江·校考一模)如图1,抛物线y=❑√36x2+4❑√33x+2❑√3与x轴交于点A,B(A在B左边),与y轴交于点C,连AC,点D与点C关于抛物线的对称轴对称,过点D作DE∥AC交抛物线于点E,交y轴于点P.(1)点F是直线AC下方抛物线上点一动点,连DF交AC于点G,连EG,当△EFG的面积的最大值时,直线DE上有一动点M,直线AC上有一动点N,满足MN⊥AC,连GM,NO,求GM+MN+NO的最小值;(2)如图2,在(1)的条件下,过点F作FH⊥x轴于点H交AC于点L,将△AHL沿着射线AC平移到点A与点C重合,从而得到△A'H'L'(点A,H,L分别对应点A',H',L'),再将△A'H'L'绕点H'逆时针旋转α(0°<α<180°),旋转过程中,边A'L'所在直线交直线DE于Q,交y轴于点R,求当△PQR为等腰三角形时,直接写出PR的长.3.(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于A(−2,0),B(4,0)两点(点A在点B的左侧),与y轴交于点C,连接AC、BC,点P为直线BC上方抛物线上一动点,连接OP交BC于点Q.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求抛物线的函数表达式;(2)当PQOQ的值最大时,求点P的坐标和PQOQ的最大值;(3)把抛物线y=−12x2+bx+c沿射线AC方向平移❑√5个单位得新抛物线y',M是新抛物线上一点,N是新抛物线对称轴上一点,当以M、N、B、C为顶点的四边形是平行四边形时,直接写出N点的坐标,并把求其...