小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题07角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,为的角平分线、不具备特殊位置时,辅助线的作法大都为在上截取,连结即可.即有≌,利用相关结论解决问题.图1AB∥CDAB+CD=BCFDEBAC图21.(2022·湖北十堰·九年级期末)在△ABC中,∠ACB=2B∠,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.2.(2022·山东烟台·九年级期末)已知在中,满足,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)【问题解决】如图1,当,为的角平分线时,在上取一点使得,连接,求证:.(2)【问题拓展】如图2,当,为的角平分线时,在上取一点使得,连接,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当为的外角平分线时,在的延长线上取一点使得,连接,线段、、又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.3.(2022·浙江·九年级期中)(1)如图1,在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当∠ACB≠90°,∠ACB=2∠B,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.4.(2022·北京九年级专题练习)在四边形中,是边的中点.(1)如图(1),若平分,,则线段、、的长度满足的数量关系为___小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com___;(直接写出答案);(2)如图(2),平分,平分,若,则线段、、、的长度满足怎样的数量关系?写出结论并证明.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,为的角平分线、于点时,辅助线的作法大都为过点作即可.即有、≌等,利用相关结论解决问题.图1图2EDCAB图3邻等对补模型:已知如图2,AP是∠CAB的角平分线,EP=DP辅助线:过点P作PG⊥AC、PF⊥AB结论:①(四点共圆);②;③1.(2022·北京·中考真题)如图,在中,平分若则____.2.(2022·山东泰安·中考真题)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2022·江苏扬州·中考真题)如图,在中,分别平分,交于点.(1)求证:;(2)过点作,垂足为.若的周长为56,,求的面积.4.(2022·河北·九年级专题练习)已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,为的角平分线,于点时,辅助线的作法大都为延长交于点即可。即可构造△PON△≌...