小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com弦图模型知识精讲1.证法一以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于,如图所示:∵Rt△DAH≌Rt△ABE,∴∠HDA=∠EAB,∵∠ADH+∠HAD=90°,∴∠EAB+∠HAD=90°,∴∠DAB=90°∵AB=AD,∴四边形ABCD是一个边长为c的正方形,它的面积等于c2,∵EF=FG=GH=HE=b-a,∠HEF=90°,∴四边形EFGH是一个边长为(b-a)的正方形,它的面积等于(b-a)2,,∴a2+b2=c2.2.证法二以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于,如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∵Rt△HAE≌Rt△EBF,∴∠AHE=∠BEF,∵∠AEH+∠AHE=90°,∴∠AEH+∠BEF=90°,∴∠HEF=180°-90°=90°,∴四边形EFGH是一个边长为c的正方形.它的面积等于c2,∵Rt△GDH≌Rt△HAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°,又∵∠GHE=90°,∴∠DHA=90°+90°=180°,∵四边形EFGH是一个边长为(a+b)的正方形,它的面积等于(a+b)2,,∴a2+b2=c2.3.证法三以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于,如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∵Rt△EAD≌Rt△CBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°,∴∠DEC=180°-90°=90°,∴△DEC是一个等腰直角三角形,它的面积等于,又∵∠DAE=90°,∠EBC=90°,∴AD∥BC,∴四边形ABCD是一个直角梯形,它的面积等于,,∴a2+b2=c2.4.证法四如图所示,分别以a、b为直角边,以c为斜边的四个直角三角形全等,图中3个正方形的边长分别为a、b、c,整个图形的面积为S,则:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∵△ABH≌△HEF,∴∠BAH=∠EHF,∴∠BAH+∠AHB=∠EHF+∠AHB=90°,∴∠AHF=90°,∴四边形AHFI是正方形,,∴,∴a2+b2=c2.5.证法五分别以a、b为直角边,以c为斜边的四个直角三角形全等,将它们按如图所示拼成一个多边形,并延长AC交DF于点P.∵D、E、F在一条直线上,且Rt△GEF≌Rt△EBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180°-90°=90°又∵AB=BE=EG=GA=c,∴四边形ABEG是一个边长为c的正方形,∴∠ABC+∠CBE=90°,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∵Rt△ABC≌Rt△EBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90°,即∠CBD=90°,又∵∠BDE=90°,∠BCP=90°,BC=BD=a,∴四边形BDPC是一个边长为a的正方形,同理,四边形HPFG是一个边长为b的正方形,设多边形GHCBE的面积为S,则,,∴a2+b2=c2.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com