小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第23章旋转章末题型过关卷【人教版】参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2022•湖北)在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为()A.(4,1)B.(4,﹣1)C.(5,1)D.(5,﹣1)【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故选:D.2.(3分)(2022•宁津县二模)如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.65°B.80°C.105°D.115°【分析】由三角形的外角性质得出∠BAB1=∠C+∠B=115°,即可得出结论.【解答】解: C,A,B1在同一条直线上,∠C=90°,∠B=25°,∴∠BAB1=∠C+∠B=115°.故选:D.3.(3分)(2022•焦作二模)若两个图形关于某一点成中心对称,那么下列说法.正确的是()①对称点的连线必过对称中心;②这两个图形一定全等;③对应线段一定平行(或在一条直线上)且相等;④将一个图形绕对称中心旋转180°必定与另一个图形重合.A.①②B.①③C.①②③D.①②③④【分析】根据(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,判断各选项即可得出答案.【解答】解:根据分析可得:①对称点的连线必过对称中心,正确;②中心对称的两个图形一定全等,正确;③对应线段一定平行(或在一条直线上)且相等,正确;④根据定义可得此说法正确;①②③④均符合题意.故选:D.4.(3分)(2022春•邯郸校级期末)如图,平面直角坐标系内Rt△ABO的顶点A坐标为(3,1),将△ABO绕O点逆时针旋转90°后,顶点A的坐标为()A.(﹣1,3)B.(1,﹣3)C.(3,1)D.(﹣3,1)【分析】画出旋转后图形的位置,根据A点坐标可得OB、AB的长度,从而确定对应线段的长度,根据小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com旋转后A点所在象限,确定其坐标.【解答】解:将△ABO绕O点逆时针旋转90°后,位置如图所示. A(3,1),∴OB=3,AB=1.∴OB′=3,A′B′=1. A′在第二象限,∴A′(﹣1,3).故选:A.5.(3分)(2022秋•明山区校级月考)将点P(﹣2,3)向上平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(2,6)B.(2,﹣6)C.(2,﹣3)D.(2,0)【分析】首先利用平移变化规律得出P1(﹣2,6),进而利用关于原点对称点的坐标性质得出P2的坐标.【解答】解: 点P(﹣2,3)向上平移3个单位得到点P1,∴P1(﹣2,6), 点P2与点P1关于原点对称,∴P2的坐标是:(2,﹣6).故选:B.6.(3分)(2022•香坊区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com180°列出式子进行求解.【...