小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com几何变换之旋转巩固练习1.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,点A、B、C对应点分别是A1、B1、C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,点A1、C1对应点分别是A2、C2,请画出△A2B1C2;(3)连接CA2,直接写出CA2的长❑√29.【分析】(1)将点A、B、C分别向上平移6个单位、向右平移3个单位得到平移后的对应点,再首尾顺次连接即可;(2)将点A1、C1分别绕B1点顺时针旋转90得到对应点,再与点B1首尾顺次连接即可;(3)利用勾股定理求解即可.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B1C2即为所求.(3)CA2¿❑√22+52=❑√29,故答案为:❑√29.【点评】本题主要考查作图﹣平移变换、旋转变换,解题的关键是掌握平移变换、旋转变换的定义和性质,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com并据此得到变换后的对应点.2.如图,∠ABC=90°,P为射线BC上任意一点(点P与点B不重合),将△ABP绕点A逆时针旋转60°得到△AED,延长DE交BP于点F,连接BE、DP.求证:(1)△ABE和△APD都是等边三角形;(2)EF=BF.【分析】(1)根据有一个角是60°的等腰三角形是等边三角形证明即可.(2)想办法证明∠BEF=∠EBF,可得结论.【解答】证明:(1)由旋转可知,△DAE≌△PAB,∠BAE=∠PAD=60°,∴AB=AE,AP=AD,∴△ABE和△APD是等边三角形.(2) △ABE是等边三角形,∴∠ABE=∠AEB=60°, △DAE≌△PAB,∴∠ABP=∠AED=90°,∴∠ABP=∠AEF=90°,∴∠ABP﹣∠ABE=∠AEF﹣∠AEB,∴∠BEF=∠EBF,∴BF=EF.【点评】本题考查旋转变换,等边三角形的判定和性质,等腰三角形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知:如图,在△ACB中,∠ACB=90°,AC=BC,直线l经过点A,BD⊥l于点D,连接CD.(1)证明A,C,B,D四个点在同一个圆上并画出圆(提示:取AB中点O);(2)求证:∠ADC=45°(3)以点C为旋转中心,把△CDB逆时针方向旋转90°,画出旋转后的图形.【分析】(1)取AB的中点O,连接OC,OD,只要证明OA=OB=OD=OC即可;(2)根据等腰三角形的性质和圆周角定理即可证得结论;(3)利用旋转的性质得出得出对应点位置进而得出答案.【解答】(1)证明:取AB的中点O,连接OD,OC. ∠ACB=∠ADB=90°,OB=OA,∴OA=OB=OD=OC,∴A,B,C,D四个点在同一个圆上;(2)证明:在△ACB中,∠ACB=90°,AC=BC,∴∠ABC=45°,∴∠ADC=∠ABC=45°;(3)如图所示:△ACD′,即为所求.【点评】本题考查了作图﹣旋转变换,点和圆的位置关系,三角形斜边直线的性质,等腰三角形的性质,圆周角定理,(3)正确得出对应点位置是解题关键.4.如图,过等边△ABC的顶点B在∠ABC内部作射线BP,∠ABP=α(0°<α<60°且α≠30°),点A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com关于射线BP的对称点为点D,直线CD交BP于点E,连接BD,AE.(1)依据题意,补全图形;(2)在α(0°<α<60°且α≠30°)变化的过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请求出∠AEB的大小;(3)连接AD交BP于点F,用等式表示线段AE,BF,CE之间的数量关系,并给予证明.【分析】(1)根据题意补全图形,即可得出结论;(2)先判断出∠ABP=∠DBP=α,BD=BA,在判断出AB=AC=BC,∠ABC=∠ACB=60°,进而得出BD=BC,∠CBD=60°+2α,∠BDC=∠BCD=6...