小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2021年中考数学真题分项汇编【全国通用】(第01期)专题14二次函数解答压轴题(共32题)姓名:__________________班级:______________得分:_________________一、解答题1.(2021·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.【答案】(1);(2),理由见解析【分析】(1)由题意易得点和点,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;(2)由题意可分当时和当时,然后根据二次函数的性质进行分类求解即可.【详解】解:(1)当时,则有点和点,代入二次函数得:,解得:,∴抛物线解析式为,∴抛物线的对称轴为;(2)由题意得:抛物线始终过定点,则由可得:①当时,由抛物线始终过定点可得此时的抛物线开口向下,即,与矛盾;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com②当时, 抛物线始终过定点,∴此时抛物线的对称轴的范围为, 点在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为, ,开口向上,∴由抛物线的性质可知离对称轴越近越小,∴.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.2.(2021·江苏南京市·中考真题)已知二次函数的图像经过两点.(1)求b的值.(2)当时,该函数的图像的顶点的纵坐标的最小值是________.(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.【答案】(1);(2)1;(3)或.【分析】(1)将点代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】解:(1)将点代入得:,两式相减得:,解得;(2)由题意得:,由(1)得:,则此函数的顶点的纵坐标为,将点代入得:,解得,则,下面证明对于任意的两个正数,都有,,(当且仅当时,等号成立),当时,,则(当且仅当,即时,等号成立),即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故当时,该函数的图像的顶点的纵坐标的最小值是1;(3)由得:,则二次函数的解析式为,由题意,分以下两种情况:①如图,当时,则当时,;当时,,即,解得;②如图,当时,当时,,当时,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得,综上,的取值范围为或.【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.3.(2021·安徽中考真题)已知抛物线的对称轴为直线.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,.比较y1与y2的大小,并说明理由;(3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比.【答案】(1);(2),见解析;(3)【分析】(1)根据对称轴,代值计算即可(2)根据二次函数的增减性分析即可得出结果(3)先根据求根公式计算出,再表示出,=,即可得出结论【详解】解:(1)由题意得:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)抛物线对称轴为直线,且当时,y随x的增大而减小,当时,y随x的增大而增大.当时,y1随x1的增大而减小,时,,时,同理:时,y2随x2的增大而增大时,.时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下...