小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com几何最值之胡不归巩固练习1.如图,抛物线y=x22﹣x3﹣与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.【解答】【解析】过点E作x轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图, EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA=,设DH=4m,EH=3m,则DE=5m,∴蚂蚁从D爬到E点的时间==4(s)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若设蚂蚁从D爬到H点的速度为1单位/s,则蚂蚁从D爬到H点的时间==4(s),∴蚂蚁从D爬到E点所用的时间等于从D爬到H点所用的时间相等,∴蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点所用时间等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s速度爬到H点的时间,作AG⊥EH于G,则AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x22﹣x3﹣=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中, tan∠CBO=,∴OC=4,则C(0,4),设直线BE的解析式为y=kx+b,把B(3,0),C(0,4)代入得,解得,∴直线BE的解析式为,解方程组得或,则E点坐标为,∴,∴蚂蚁从A爬到G点的时间=(s),即蚂蚁从A到E的最短时间为.2.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)证明:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.【解答】(1)见解析;(2);(3)AB=8【解析】(1)连接OC,如图, CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴h=OC•sin60°=OC,∴OC=h,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图,则∠AOF=∠COF=∠AOC=(180°60°﹣)=60°. OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H, OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=DC,∴CD+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,此时FH=OF•sin∠FOH=OF=6,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则OF=4,AB=2OF=8.∴当CD+OD的最小值为6时,⊙O的直径AB的长为8.3.抛物线与轴交于点A、B(A在B的左边),与轴交于点C,点P是直线AC上方抛物线上的一点,PF⊥轴于点F,PF与线段AC交于点E,将线段OB沿轴左右平移,线段OB的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标.【解答】【解析】在抛物线中,令,即,解得,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,解得,,设直线AC的解析式为,将A、C两个点坐标代入得,解得,∴直线AC的解析式为,设, PF⊥轴,且点E在直线AC上,点P在直线AB上方的抛物线上,,,,,,∴∠CAO=30º,过点E作EH∥AB交y轴于点H,则EH⊥y...