小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题18二次函数中线段、周长、面积最值问题【中考考向导航】目录【直击中考】.....................................................................................................................................................1【考向一二次函数中求线段和最值问题】....................................................................................................1【考向二二次函数中求三角形周长最值问题】..........................................................................................13【考向三二次函数中求三角形面积最值问题】..........................................................................................18【直击中考】【考向一二次函数中求线段和最值问题】例题:(2022秋·陕西西安·九年级校考阶段练习)如已知二次函数的图象过点和点,且与y轴交于点C,D点在抛物线上且横坐标是.(1)求抛物线的解析式;(2)写出这个二次函数图象的对称轴、顶点坐标:(3)抛物线的对称轴上有一动点,求出的最小值.【变式训练】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2023秋·安徽合肥·九年级校考期末)如图,抛物线与x轴交于、两点,与y轴交于点C.点P是第一象限内抛物线上的一个动点,过点P作直线轴于点D,交直线BC于点E.(1)求抛物线的解析式;(2)求线段的最大值;(3)当时,求点的坐标.2.(2022·四川成都·四川省成都市七中育才学校校考模拟预测)抛物线分别交x轴于点,,交y轴于点C,抛物线的对称轴与x轴相交于点D,点M为线段OC上的动点,点N为线段AC上的动点,且.(1)求抛物线的表达式;(2)线段MN,NC在数量上有何关系,请写出你的理由;(3)在M,N移动的过程中,DM+MC是否有最小值,如果有,请写出理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2023·全国·九年级专题练习)如图,抛物线的图象与直线有唯一交点.(1)求抛物线和直线的解析式;(2)若点拋物线与轴的交点分别为点、,抛物线的对称轴上是否存在一点,使的值最小?如果有,请求出这个最小值,如果没有,请说明理由.(3)直线与轴交于点,点是轴上一动点,请你写出使是等腰三角形的所有点的横坐标.4.(2022·山东济南·校考一模)如图,直线与x轴交于点A,与y轴交于点C,抛物线过点A.(1)求出抛物线解析式的一般式;(2)抛物线上的动点D在一次函数的图象下方,求面积的最大值,并求出此时点D的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【考向二二次函数中求三角形周长最值问题】例题:(2020·贵州遵义·统考一模)已知抛物线经过、、三点,直线l是抛物线的对称轴.(1)求抛物线的解析式;(2)设点P是直线上的一个动点,当的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使以、、为顶点的三角形为直角三形.若存在,求出点M的坐标;若不存在,请说明理由.【变式训练】1.(2022秋·山东菏泽·九年级校考期末)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?若存在,求出面积的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com最大值.若没有,请说明理由.【考向三二次函数中求三角形面积最值问题】例题:(2023·陕西咸阳·校考一模)如图,在平面直角坐标系...