小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com等腰三角形存在性问题巩固练习1.直线y¿−43x+n交x轴于点A,交y轴于点C(0,4),抛物线y¿23x2+¿bx+c经过点A,交y轴于点B(0,﹣2),点P为抛物线上一个动点,经过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当m=1时,求PD的长;(3)是否存在点P,使△BDP是等腰直角三角形?若存在,请求线段PD的长;若不存在,请说明理由.2.如图在平面平面直角系中,抛物线y=ax2+bx+c(a≠0)的图象与轴交于点A(﹣2,0)、B(4,0),与轴交于点C(0,4),直线l是抛物线的对称轴,与x轴交于点D,点P是直线l上一动点.(1)求此抛物线的表达式.(2)当AP+CP的值最小时,求点P的坐标;再以点A为圆心,AP的长为半径作⊙A.求证:BP与⊙A相切.(3)点P在直线l上运动时,是否存在等腰△ACP?若存在,请写出所有符合条件的点P坐标;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0)两点,过点A的直线交抛物线于点C(2,m),交y轴于点D.(1)求抛物线及直线AC的解析式;(2)点P是线段AC上的一动点(点P与点A、C不重合),过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值;(3)点M(m,﹣3)是抛物线上一点,问在直线AC上是否存在点F,使△CMF是等腰直角三角形?如果存在,请求出点F的坐标;如果不存在,请说明理由.4.如图1,在直角梯形ABCD中,AB∥CD,∠C=90°,AE⊥CD于E,DE=3,AE=4,对角线DB平分∠ADC.(1)求梯形ABCD的面积;(2)如图2,一动点P从D点出发,以2个单位/秒的速度沿折线DA﹣AB匀速运动,另一动点Q从E点出发,以1个单位/秒的速度沿EC匀速运动,P、Q同时出发,当Q与C重合时,P、Q停止运动,在点P的运动过程中,过P作PM⊥DC于M,在点P、Q的运动过程中,以PM、MQ为两边作矩形PMQN,使矩形PMQN在直线DC上侧,直线AD右侧,设运动时间为t秒(t>0).在整个运动过程中,设矩形PMQN和CBD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图3,动点P从D点出发,以2个单位/秒的速度沿线段DA运动到A点后,可沿直线AB方向向左或右匀速运动,过点P作PF∥AD交CB的延长线于G点,交CD于F点,在直线AB上是否存在H点,使得△FGH为等腰直角三角形?若存在,求出对应的BH的值;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.如图1直角梯形ABCD中,∠ABC=90°,AB∥CD,AB=8,CD=3,BC¿52,在Rt△EFG中,∠GEF=90°,EF=3,GE=6,将△EFG与直角梯形ABCD如图(2)摆放,使E与A重合,EF与AB重合,△EFG与梯形ABCD在直线AB的同侧,现将△EFG沿射线AB向右以每秒1个单位的速度平移,当点C落在线段FG上时停止运动,在平移过程中,设△EFG与梯形ABCD的重叠部分面积为S,运动时间为t秒(t≥0).(1)求出GF边经过点D时的时间t;(2)若在△GEF运动过程中,设△GEF与梯形ABCD的重叠部分面积为S,请写出S与t的函数关系式;(3)如图3,当点C在线段GF上时,将此时的△EFG沿FG翻折,得到△HFG,将△HFG绕点F旋转,在旋转过程中,设直线HG与射线AD交于点M,与射线AB交于点N,是否存在钝角△AMN为等腰三角形?若存在,求出此时AN的长;若不存在,说明理由.6.已知抛物线y=ax2+bx+c交x轴于点A(﹣1,0),B(5,0),交y轴于点C(0,5),点D是该抛物小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com线上一点,且点D的横坐标为4,连BD,点P是线段AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN,设点P的坐标为(t,0).(1)求抛物线解析式;(2)...