小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com平行四边形存在性问题知识精讲一、关于平行四边形的基础知识1、什么是平行四边形?平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.2、平行四边形具有哪些性质?边的性质:平行四边形两组对边平行且相等;角的性质:平行四边形邻角互补,对角相等;对角线性质:平行四边形的对角线互相平分;平行四边形是中心对称图形,对角线的交点为对称中心.注:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.3、平行四边形的判定方法a)两组对边分别平行的四边形是平行四边形;b)两组对边分别相等的四边形是平行四边形;c)一组对边平行且相等的四边形是平行四边形;d)两组对角分别相等的四边形是平行四边形;e)对角线互相平分的四边形是平行四边形.二、平行四边形存在性问题的解题策略1、由平行四边形的对边平行且相等,我们可以将点A、D看成是由B、C两点移动得到的,且移动的路径完全相同,如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以可以得到;2、由平行四边形的对角线互相平分我们可以得到AC的中点与BD的中点是重合的,如图所示:点O就是AC的中点,也是BD的中点,所以.上述两种情况所得到的方程进行变形,会发现所得到的方程是一样的,过程如下:于是,我们又可以得到,当AC、BD为平行四边形ABCD的对角线时,则有(对应横、纵坐标相加).上述结论反过来,若,能否证明四边形ABCD就是平行四边形呢?答案是不一定,如下图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点O是CD的中点,也是AB的中点,但是ABCD很显然不是平行四边形,这种反例要多加注意。三、平行四边形存在性问题的考法1、三定一动类(三个定点,一个动点)例:如图,已知A(1,2)、B(5,3)、C(3,5),试在平面内找一点D,使得以A、B、C、D四个点为顶点的四边形是平行四边形.【解答】见解析【解析】设D(m,n),通过对角线互相平分,分类讨论:①当BC为对角线时,则有,此时②当AC为对角线时,则有,此时③当AB为对角线时,则有,此时,具体如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2、两动两定例:如图,已知A(1,1)、B(3,2),点C在轴上,点D在轴上,若以A、B、C、D为顶点的四边形刚好是平行四边形,求点C、D的坐标.【解答】见解析【解析】设C(m,0)、(0,N),通过对角线互相平分,分类讨论:①当AB为对角线时,则有∴②当AC为对角线时,则有∴③当AD为对角线时,则有∴.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com