小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com平行四边形存在性问题巩固练习1.在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,8),C(6,8),四边形OABC是梯形,点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒2个单位,点Q沿OC、CB向终点B运动,速度为每秒3个单位,当这两点有一点到达自己的终点则另一点也停止运动,设从出发起,运动了t秒.①求直线OC的解析式.②试写出点Q的坐标,并写出此时t的取值范围.③从运动开始,梯形被直线PQ分割后的图形中是否存在平行四边形,若存在,求出t的值,若不存在,请说明理由.④t为何值时,直线PQ把梯形OCBA分成面积为1:7的两部分?2.已知抛物线y=x2﹣(m+3)x+32(m+1).(1)小明发现无论m为何值时,抛物线总与x轴相交,你知道为什么吗?请给予说明.(2)如图,抛物线与x轴的正半轴交于M,N两点,且线段MN的长度为2,求此抛物线的解析式.(3)如图,(2)中的抛物线与y轴交于点A,过点A的直线y=x+b与抛物线的另一个交点为点B,与抛物线的对称轴交于点D,点C为抛物线的顶点.问在线段AB上是否存在一点P,过点P作x轴的垂线交抛物线于点E,使四边形DCEP为平行四边形?若存在,请求出该平行四边形的面积;若不存在,说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过A(3,0)、B(1,0)、C(0.3)三点,设该二次函数的顶点为G.(1)求这个二次函数的解析式及其图象的顶点G的坐标;(2)求tan∠ACG的值;(3)如该二次函数的图象上有一点P,x轴上有一点E,问是否存在以A、G、E、P为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.4.已知抛物线y=ax2+bx+5经过点A(1,0),B(5,0)两点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)如图1,①当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?②在y轴上确定一点M,使点M到D、B两点的距离之和d=MD+MB最小,求点M的坐标.(3)如图2,若四边形OEBF是以OB为对角线的平行四边形.是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点的坐标;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知,抛物线y=﹣x2+bx+c,当1<x<3时,y值为正;当x<1或x>3时,y值为负.(1)求抛物线的解析式.(2)若直线y=kx+b(k≠0)与抛物线交于点A(12,m)和B(4,n),求直线的解析式.(3)设平行于y轴的直线x=t和x=t+2分别交线段AB于E、F,交二次函数于H、G.①求t的取值范围;②是否存在适当的t值,使得EFGH是平行四边形?若存在,求出t值;若不存在,请说明理由.6.如图,抛物线l1:y=x24﹣的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.(1)直接写出l2所对应的函数表达式;(2)若点B是抛物线l1上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.如图,在平面直角坐标系中,已知直线l1和l2相交于点A,它们的解析式分别为l1:y¿34x,l2:y¿−43x+203.直线l2与两坐标轴分别相交于点B和点C,点P在线段OB上从点O出发.以每秒1个单位的速度向点B运动,同时点Q从点B出发以每秒4个单位的速度沿B→O→C→B的方向向点B运动,过点P作直线PM⊥OB分别交l1,l2于点M,N.连接MQ.设点P,Q运动的时...