小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题21二次函数与等腰三角形存在问题1.(2021·江苏宿迁·中考真题)如图,抛物线与轴交于A(-1,0),B(4,0),与轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.2.(2021·重庆市九年级开学考试)如图,已知抛物线的图象与轴交于,两点,与轴交于点,抛物线的对称轴与轴交于点.点从点出发,以每秒1个单位长度的速度向运动,过作轴的垂线,交抛物线于点,交于.(1)求点和点的坐标;(2)设当点运动了(秒时,四边形的面积为,求与的函数关系式,并指出自变量的取值范围;(3)在线段上是否存在点,使得成为以为一腰的等腰三角形?若存在,求出点的坐标,若不存在,说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2021—2022广东九年级期中)如图,已知抛物线过点,交轴于点和点(点在点的左侧),抛物线的顶点为,对称轴交轴于点,连接.(1)直接写出的值,点的坐标和抛物线对称轴的表达式.(2)若点是抛物线对称轴上的点,当是等腰三角形时,求点的坐标.(3)点是抛物线上的动点,连接,,将沿所在的直线对折,点落在坐标平面内的点处.求当点恰好落在直线上时点的横坐标.4.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直接写出点Q的坐标;若不存在,请说明理由.5.(2021—2022重庆校九年级月考)抛物线与x轴交于A、B两点,与y轴交于C点,抛物线的对称轴交x轴于点D,已知,(1)求抛物线的表达式;(2)如图1,点P是线段上的一个动点,过点P作x轴的垂线与抛物线相交于点Q,当点P运动到什么位置时,四边形的面积最大?求出四边形的最大面积及此时Р点的坐标.(3)如图2,设抛物线的顶点为M,将抛物线沿射线方向以每秒个单位的速度平移t秒,平移后的抛物线的顶点为,当是等腰三角形时,求t的值.6.(2021—2022四川南部县九年级月考)如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线的顶点坐标(1,4).(1)求的值和抛物线的解析式;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)在抛物线的对称轴上求一点P,使得PAB的周长最小,并求出最小值;(3)在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.7.(2021—2022安徽九年级月考)如图所示,抛物线经过点,点,与轴交于点,连接,.点是线段上不与点、重合的点,过点作轴,交抛物线于点,交于点.(1)求抛物线的表达式;(2)过点作,垂足为点.设点的坐标为,请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?(3)试探究是否存在这样的点,使得以,,为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标;若不存在,请说明理由.8.(2021·重庆·中考模拟预测)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点...