小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题09在网格背景下的面积和周长计算1.如图,正方形网格中每个小正方形的边长均为1,点A,B,C,E,F在同一条圆弧上,且点C,E,F在格点(小正方形的顶点)上,若,则阴影部分的面积为_________.【答案】【分析】根据网格的特点找到过点的圆的圆心,进而根据已知条件与圆周角定理求得,关于阴影部分面积面积等于即可求解.【详解】如图,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com根据网格的特点找到的垂直平分线与的垂直平分线,交于点,连接,,,,阴影部分面积面积等于.故答案为:.【我思故我在】本题考查了圆周角定理,求扇形面积公式,确定圆心是解题的关键.2.如图是由相同的小正方形组成的网格,每个小正方形的边长为1,上的点A,B,C,D均为格点,上有一点E,且,则图中阴影部分的面积为______.【答案】【分析】线段AB和线段BC的垂直平分线相交于点O,则点O即为所在的圆得的圆心,连接OC,OE,由圆周角定理得∠COE=2∠CAE=30°,过点C作CH⊥OE于点H,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∠OHC=90°,在Rt△OCH中,求得CH=OC=,利用即可求出图中阴影部分的面积.【详解】解:如图,线段AB和线段BC的垂直平分线相交于点O,则点O即为所在的圆得的圆心,连接OC,OE, ,∴∠COE=2∠CAE=30°,过点C作CH⊥OE于点H,则∠OHC=90°,由勾股定理得OC=OE=,在Rt△OCH中,∠OHC=90°,∠COH=30°,OC=,∴CH=OC=,∴==故答案为:【我思故我在】此题考查了圆周角定理、判断三角形外接圆的圆心位置、扇形的面积公式、勾股定理、直角三角形的性质等知识,利用圆周角定理得到∠COE=2∠CAE=30°是解题的关键.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.如图所示的网格中,每个小正方形的边长均为1,的三个顶点均在格点上,点D是边AB的中点,格点E在上,则图中阴影部分的面积为_______.【答案】【分析】取BC中点F,连接DF,由中位线的性质得到,,利用勾股定理分别解得AC,BC,AB的长,证明为等腰直角三角形,继而得到也是等腰直角三角形,解得的面积及扇形CDF的面积即可解答.【详解】解:如图,连接DFD是边AB的中点,F是边BC的中点,是等腰直角三角形,也是等腰直角三角形,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案为:.【我思故我在】本题考查网格与勾股定理、扇形的面积、中位线性质、勾股定理的逆定理等知识,是重要考点,掌握相关知识是解题关键.4.如图所示的网格中,每个小正方形的边长为1,点A,B,C均为小正方形的顶点,且点B在上,则阴影部分的面积为__.【答案】##【分析】点O为过B点的纵轴和过C点的横轴的交点,连接OA,根据题意求出OA,OB,OC的长,确定圆心和半径,从而求出弓形BC的面积,进而解答;【详解】解:如图,点O为过B点的纵轴和过C点的横轴的交点,连接OA,D点为小正方形的顶点,根据题意由图可得:OA=,OB=OC=5,∴O为的外接圆的圆心,AD为底边,则的面积=, OC⊥OB,圆的半径为5,则扇形BC的面积为外接圆的面积,∴弓形BC的面积=,∴阴影部分的面积为:10+=,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案为:.【我思故我在】本题考查了求不规则图形的面积,勾股定理,三角形外接圆的性质,扇形面积的计算;找出圆心的位置是解题的关键.5.如图,在由边长为1的小正方形组成的网格中,一条弧经过格点(网格线的交点)A,B,D,点C为弧BD上一点.若,则弧CD的长为__________.【...