小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题26二次函数与三角形面积问题1.(2021—2022广东珠海市九年级期中)已知抛物线y=ax2+bx+c(a≠0)经过A(4,0)、B(﹣1,0)、C(0,4)三点.(1)求抛物线的函数解析式;(2)如图1,点D是直线AC上方的抛物线的一点,DN⊥AC于点D,DMy轴交AC于点M,求DMN周长的最大值及此时点D的坐标;(3)如图2,点P为抛物线第一象限上的点,连接OP与直线AC相交于点Q,若=3:5,求点P的坐标.2.(2021—2022辽宁连山九年级月考)如图,在平面直角坐标系中,抛物线,与轴交于点与轴交于点、.且点,,点为抛物线上的一动点.(1)求二次函数的解析式;(2)如图1,过点作平行于轴,交抛物线于点,若点在的上方,作平行于轴交于点,连接,,当时,求点坐标;(3)设抛物线的对称轴与交于点,点在直线上,当以点、、、为顶点的四边形为平行四边形时,请直接写出点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2021—2022湖南省长沙市九年级月考)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0)、B(4,1)两点,且与y轴交于点C.(1)求抛物线的解析式;(2)如图,设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△PAB的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求面积的最小值及E点坐标.4.(2021—2022福建省福州九年级月考)如图,抛物线与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式:(2)点E为x轴上一点,点F为抛物线上一点,是否存在点E,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的点E的坐标:如果不存在,请说明理由(3)点M为直线AD上方抛物线上一点,求当的面积最大时M点的坐标及最大的面积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2021—2022广东东莞九年级月考)如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B(1)求抛物线和直线AB的解析式;(2)求;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使面积最大,若存在,求出P点的坐标;若不存在,请说明理由(4)设点Q是抛物线上的一个动点,是否存在一点Q,使,若存在,直接写出Q点的坐标;若不存在,请说明理由6.(2021—2022辽宁九年级期中)已知抛物线经过点A(-3,-7),B(3,5),顶点为点E,抛物线的对称轴与直线AB交于点C.(1)求直线AB的解析式和抛物线的解析式.(2)在抛物线上A,E两点之间的部分(不包含A,E两点),是否存在点D,使得?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,E,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.(2021—2022广东汕头市九年级期中)已知抛物线y=x2-(m-3)x+n与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,若抛物线的对称轴为x=2,A(1,0).(1)求抛物线的解析式;(2)若点P是抛物线上点B右边的一动点,问:是否存在这样的点P,使得∠CAP=∠CAO,若存在,请求出点P的坐标;若不存在,请说明理由.(3)点Q是抛物线上的点,满足=k只有三个点Q,直接写出k的值与Q的坐标.8.(2021—2022辽宁沈阳市九年级期中)如图,在平面直角坐标系中,抛物线yx2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).(1)求抛物线的解析式;(2)直线AB的函数解析式为...