小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题23与四边形相关的压轴题一、选填题1.(2021·广西来宾市·中考真题)如图,矩形纸片,,点,分别在,上,把纸片如图沿折叠,点,的对应点分别为,,连接并延长交线段于点,则的值为()A.B.C.D.【答案】A【分析】根据折叠性质则可得出是的垂直平分线,则由直角三角形性质及矩形性质可得∠AEO=∠AGD,∠FHE=∠D=90°,根据相似三角形判定推出△EFH∽△GAD,再利用矩形判定及性质证得FH=AB,即可求得结果.【详解】解:如图,过点F作FH⊥AD于点H, 点,的对应点分别为,,∴,,∴EF是AA'的垂直平分线.∴∠AOE=90°.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com 四边形是矩形,∴∠BAD=∠B=∠D=90°.∴∠OAE+∠AEO=∠OAE+∠AGD,∴∠AEO=∠AGD. FH⊥AD,∴∠FHE=∠D=90°.∴△EFH∽△GAD.∴. ∠AHF=∠BAD=∠B=90°,∴四边形ABFH是矩形.∴FH=AB.∴;故选:A.【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键.2.(2021·湖南衡阳市·中考真题)如图,矩形纸片,点M、N分别在矩形的边、上,将矩形纸片沿直线折叠,使点C落在矩形的边上,记为点P,点D落在G处,连接,交于点Q,连接.下列结论:①四边形是菱形;②点P与点A重合时,;③的面积S的取值范围是.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案】C【分析】根据矩形的性质与折叠的性质,证明出,,通过等量代换,得到PM=CN,则由一组邻边相等的平行四边形是菱形得到结论正确;用勾股定理,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由菱形的性质对角线互相垂直,再用勾股定理求出;当过点D时,最小面积,当P点与A点重合时,S最大为,得出答案.【详解】解:①如图1, ,∴, 折叠,∴,NC=NP∴,∴,∴PM=CN,∴,∴四边形为平行四边形, ,∴平行四边形为菱形,故①正确,符合题意;②当点P与A重合时,如图2所示设,则,在中,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,解得:,∴,,∴,又 四边形为菱形,∴,且,∴∴,故②错误,不符合题意.③当过点D时,如图3所示:此时,最短,四边形的面积最小,则S最小为,当P点与A点重合时,最长,四边形的面积最大,则S最大为,∴,故③正确,符合题意.故答案为:①③.【点睛】本题主要考查了菱形的判定与性质、折叠问题、勾股定理的综合应用,熟练掌握菱形的判定定理与性质定理、勾股定理是解决本题的关键.3.(2021·湖南常德市·中考真题)如图,已知F、E分别是正方形的边与的中点,与交于P.则下列结论成立的是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】C【分析】根据正方形的性质,全等三角形的判定和性质以及等腰三角形的性质逐一判断即可.【详解】解: 四边形ABCD是正方形,∴AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°, 已知F、E分别是正方形ABCD的边AB与BC的中点,∴BE=BC=AB<AE,故A选项错误,不符合题意;在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴∠BAE=∠ADF, ∠ADF+∠AFD=90°,∴∠BAE+∠AFD=90°,∴∠APF=90°,∴∠EAF+∠AFD=90°,故C选项正确,符合题意;连接FC,同理可证得△CBF≌△DAF(SAS),∴∠BCF=∠ADF,∴∠BCD-∠BCF=∠ADC-∠ADF,即90°-∠BCF=90°-∠ADF,∴∠PDC=∠FCD>∠PCD,∴PC>PD,故B选项错误,不符合题意; AD>PD,∴CD>PD,∴∠DPC>∠DCP,∴90°-∠DPC<90°-∠DCP,∴∠CPE<∠PCE,∴PE>CE,故D选项错误,不符合题意;故选:C.【点睛】本题考查了正方形的...