小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2021年中考数学真题分项汇编【全国通用】(第02期)专题23锐角三角函数姓名:__________________班级:______________得分:_________________一、单选题1.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点处,然后沿斜坡前行到达最佳测量点处,在点处测得塔顶的仰角为,已知斜坡的斜面坡度,且点,,,,在同一平面内,小明同学测得古塔的高度是()A.B.C.D.【答案】A【分析】过作于,于,得到,,设,,根据勾股定理得到,求得,,,于是得到结论.【详解】解:过作于,于,,,斜坡的斜面坡度,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,设,,,,,,,,,,故选:A.【点睛】本题考查了解直角三角形的应用仰角俯角问题,解直角三角形的应用坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.2.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为的处测得试验田右侧出界处俯角为,无人机垂直下降至处,又测得试验田左侧边界处俯角为,则,之间的距离为(参考数据:,,,,结果保留整数)()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】C【分析】根据题意易得OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,然后根据三角函数可进行求解.【详解】解:由题意得:OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,∴,∴,,∴;故选C.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.3.如图,是的外接圆,CD是的直径.若,弦,则的值为()A.B.C.D.【答案】A【分析】连接AD,根据直径所对的圆周角等于90°和勾股定理,可以求得AD的长,然后即可求得∠ADC的余弦值,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com再根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC,从而可以得到cos∠ABC的值.【详解】解:连接AD,如右图所示, CD是⊙O的直径,CD=10,弦AC=6,∴∠DAC=90°,∴AD==8,∴cos∠ADC==, ∠ABC=∠ADC,∴cos∠ABC的值为,故选:A.【点睛】本题考查三角形的外接圆与外心、圆周角、锐角三角函数、勾股定理,解答本题的关键是求出cos∠ADC的值,利用数形结合的思想解答.4.如图,点A、B、C在边长为1的正方形网格格点上,下列结论错误的是()A.sinBB.sinCC.tanBD.sin2B+sin2C=1【答案】A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】根据勾股定理得出AB,AC,BC的长,进而利用勾股定理的逆定理得出△ABC是直角三角形,进而解答即可.【详解】解:由勾股定理得:,∴△ABC是直角三角形,∠BAC=90°,∴,,,,只有A错误.故选择:A.【点睛】此题考查解直角三角形,关键是根据勾股定理得出AB,AC,BC的长解答.5.如图,在⊙O中,尺规作图的部分作法如下:(1)分别以弦AB的端点A、B为圆心,适当等长为半径画弧,使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10,AB=16,则tan∠B等于()A.B.C.D.【答案】B【分析】根据尺规作图的作法,可得垂直平分,在中,利用勾股定理求出ON,即可解答.【详解】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解:根据尺规作图的作法,得:垂直平分,即, AB=16,∴,在中,,∴,∴故选:B【点睛】本题主要考查了尺规作图—垂直平分线的作法和解直角三角形,解题的关键是熟练...