小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题09二次函数与实际应用(喷水问题)一、单选题1.(2021·山东夏津·九年级期末)某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子恰为水面中心,安置在柱子顶端处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,在过的任一平面上,建立平面直角坐标系(如图),水流喷出的高度与水平距离之间的关系式是,则下列结论错误的是()A.柱子的高度为B.喷出的水流距柱子处达到最大高度C.喷出的水流距水平面的最大高度是D.水池的半径至少要才能使喷出的水流不至于落在池外【答案】C【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.【详解】解: y=-x2+2x+3=-(x-1)2+4,∴当x=0时,y=3,即OA=3m,故A正确,当x=1时,y取得最大值,此时y=4,故B正确,C错误当y=0时,x=3或x=-1(舍去),故D正确,故选:C.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2.(2021·安徽芜湖·九年级月考)某广场有一个小型喷泉,水流从垂直于地面的水管喷出,长为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点到的距离为.建立平面直角坐标系,水流喷出的高度与水平距离之间近似满足函数关系,则水流喷出的最大高度为()A.B.C.D.【答案】D【分析】由题意可得,抛物线经过点(0,1.5)和(3,0),把上述两个点坐标代入二次函数表达式,可求出a和c的值,则抛物线的解析式可求出,再把抛物线解析式化为顶点式即可求出水流喷出的最大高度.【详解】解:由题意可得,抛物线经过点(0,1.5)和(3,0),把上述两个点坐标代入二次函数表达式得:,解得:,∴函数表达式为:, a<0,故函数有最大值,∴当x=1时,y取得最大值,此时y=2,答:水流喷出的最大高度为2米.故选:D.【点睛】本题考查了二次函数的性质在实际生活中的应用,要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2021·河北张家口·中考一模)如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时.达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌【答案】D【分析】A、设石块运行的函数关系式为y=a(x-20)2+11,用待定系数法求得a的值即可求得答案;B、把y=0代入函数y=﹣x2+x+1即可水流喷射的最远水平距离C、当x=20时y=11,减去2即可;D、向后平移后的解析式为,把x=37代入解析式求得y的值,再减3后与2.3比较大小即可做出判断.【详解】解:A、设石块运行的函数关系式为y=a(x-20)2+11,把(0,1)代入解析式得:400a+11=1,解得:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴解析式为;故A不符合题意;B、当y=0时,;解得x=2+20,∴水流喷射的最远水平距离是2+20米;故B不符合题意;C、当x=20时,y=11,∴11-2=9∴喷射出的水流与坡面OA之间的最大铅直高度是9米故C不符合题意;D、向后平移后的解析式为,当x=37时,y=8.58.5-3=5.5>2.3,∴可以避开对这棵石...