小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2021年中考数学真题分项汇编【全国通用】(第01期)专题7一元二次方程及应用(共30题)姓名:__________________班级:______________得分:_________________一、单选题1.(2021·山东临沂市·中考真题)方程的根是()A.B.C.D.【答案】C【分析】利用因式分解法解方程即可得到正确选项.【详解】解: ,∴,∴,∴x+7=0,x-8=0,∴x1=-7,x2=8.故选:C.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了.2.(2021·浙江丽水市·中考真题)用配方法解方程时,配方结果正确的是()A.B.C.D.【答案】D【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】解:,,,,故选:D.【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方.3.(2021·四川泸州市·中考真题)关于x的一元二次方程的两实数根,满足,则的值是()A.8B.16C.32D.16或40【答案】C【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得或,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程或当时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com原一元二次方程为,,当时,原一元二次方程为原方程无解,不符合题意,舍去,故选:C.【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.4.(2021·四川广安市·中考真题)关于的一元二次方程有实数根,则的取值范围是()A.且B.C.且D.【答案】A【分析】根据一元二次方程的定义和判别式的意义得到a+2≠0且△≥0,然后求出两不等式的公共部分即可.【详解】解: 关于x的一元二次方程有实数根,∴△≥0且a+2≠0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴(-3)2-4(a+2)×1≥0且a+2≠0,解得:a≤且a≠-2,故选:A.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线不经过第一象限,则关于的方程的实数根的个数为()A.0个B.1个C.2个D.1或2个【答案】D【分析】直线不经过第一象限,则m=0或m<0,分这两种情形判断方程的根.【详解】 直线不经过第一象限,∴m=0或m<0,当m=0时,方程变形为x+1=0,是一元一次方程,故有一个实数根;当m<0时,方程是一元二次方程,且△=, m<0,∴-4m>0,∴1-4m>1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D.【点睛】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.(2021·四川眉山市·中考真题)已知一元二次方程的两根为,,则的值为()A.B.C.2D.5【答案】A【分析】根据一元二次方程根的定义,得,结合根与系数的关系,得+=3...