小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com最值问题集锦021.(2019•绵阳)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【考点】反比例函数与一次函数的交点问题.菁优网版权所有【分析】(1)将点A(4,1)代入y=,即可求出m的值,进一步可求出反比例函数解析式;(2)先证△CDB△∽CEA,由CE=4CD可求出BD的长度,可进一步求出点B的坐标,以及直线AC的解析式,直线AC与坐标轴交点的坐标,可证直线AC与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM长度的最小值.【解答】解:(1)将点A(4,1)代入y=,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com得,m23﹣m=4,解得,m1=4,m2=﹣1,∴m的值为4或﹣1;反比例函数解析式为:y=;(2) BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴, CE=4CD,∴AE=4BD, A(4,1),∴AE=4,∴BD=1,∴xB=1,∴yB==4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得,k=﹣1,b=5,∴yAB=﹣x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CF=OC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OM=CF=.【点评】本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.2.(2019•株洲)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.【考点】反比例函数综合题.菁优网版权所有【分析】(1)将点O、B的坐标代入一次函数表达式:y=kx,即可求解;(2)①sin∠APQ===sinα=,则PA=a=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t24﹣t;②当t=时,T取得最小值,而点C(t,2t),即可求解.【解答】解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=, OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t24﹣t,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com② 4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.【点评】本题为反比例函数综合运用题,涉及到等腰三角形性质、解直角三角形、一次函数等知识,其中(2)①...