小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和要点感知三角形内角和定理:三角形三个内角的和等于______.预习练习在△ABC中,∠B=40°,∠C=80°,则∠A的度数为()A.30°B.40°C.50°D.60°知识点1三角形内角和定理1.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(滨州中考)一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.写出下列图中x的值:(1)x=______.(2)x=______.4.已知:如图,∠A+∠B+∠C+∠D+∠E+∠F=______.知识点2三角形内角和定理与三角形的角平分线5.如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,求∠DBC的度数.知识点3三角形内角和与平行线的性质6.如图,△ABC中,点D、E分别在AB、AC边上,DE∥BC,∠A=50°,∠C=70°,那么∠ADE的度数是______.7.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠ADE=155°,则∠B的度小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com数为______.知识点4利用三角形内角和定理求视角[来源:学。科。网]8.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,则从灯塔P观测A,B两处的视角∠P的度数是()A.30°B.32°C.35°D.40°[来源:学科网]9.如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向.求从A点观测B,C两点的视角∠BAC的度数.10.如图,∠1+∠2+∠3+∠4=()A.360°B.180°C.280°D.320°11.(丽水中考)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80°B.70°C.60°D.50°12.(邵阳中考)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°13.在△ABC中,∠A=∠B+∠C,则∠A=______.14.一个三角形中最多有______个内角是钝角,最多可有______个内角是锐角.15.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=148°,断定这个零件是否合格?为什么?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com16.如图是A,B,C三个岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东65°方向,C岛在B岛的北偏西40°方向.(1)求C岛看A、B两岛的视角∠ACB的度数?(2)聪明的刘凯同学发现解决第(1)问,可以不用“B岛在A岛的北偏东65°方向”这个条件,你能求吗?[来源:学|科|网Z|X|X|K]17.如图,在△ABC中,∠A=46°,CE是∠ACB的平分线,B,C,D在同一条直线上,DF∥EC,∠D=42°.求∠B的度数.[来源:学|科|网Z|X|X|K]挑战自我18.如图,△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC的度数.参考答案课前预习要点感知180°[来源:学科网ZXXK]预习练习D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当堂训练1.D2.D3.(1)45754.360°5.∵∠A=36°,∠C=72°,∴∠ABC=72°.∵BD平分∠ABC,∴∠DBC=21∠ABC=21×72°=36°.6.60°7.65°8.A9.图略,过A作AF∥BD,∴∠BAF=∠ABD=40°.显然AF∥EC,∴∠CAF=∠ECA=50°.∴∠BAC=∠BAF+∠CAF=40°+50°=90°.课后作业10.C11.C12.C13.90°14.1315.不合格.理由:连接BC,∵∠A=90°,∴∠ACB+∠ABC=90°.∵∠BDC=148°,∴∠DCB+∠DBC=32°.∴∠ABD+∠ACD=58°≠32°+21°.∴这个零件不合格.16.(1)∠ACB=75°.(2)过C作AD的平行线CF,利用“两直线平行,内错角相等”,发现∠ACB等于∠DAC与∠EBC的和.17.∵FD∥EC,∴∠BCE=∠D=42°.∵CE是∠ACB的平分线,∴∠ACB=2∠BCE=84°.∵∠A=46°,∴∠B=180°-84°-46°=50°.18.∵∠A=40°,∠ACB=∠ABC,∴∠ACB=∠ABC=70°.又∵∠1=∠2,∴∠BCP=∠ABP.∴∠2+∠BCP=70°.∴∠BPC=180°-(∠2+∠BCP)=110°.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com