小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题02函数及其应用、指对幂函数易错点一:对函数定义域、值域及解析式理解存在偏差(定义域、值域及解析式的求算)已知函数的具体解析式求定义域的方法法1:若是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.法2:复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.函数解析式的常见求法法1:配凑法:已知,求的问题,往往把右边的整理或配凑成只含的式子,然后用将代换.法2:待定系数法:已知函数的类型(如一次函数、二次函数)可用待定系数法,比如二次函数可设为,其中是待定系数,根据题设条件,列出方程组,解出即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com法3:换元法:已知,求时,往往可设,从中解出,代入进行换元.应用换元法时要注意新元的取值范围.法4:解方程组法:已知满足某个等式,这个等式除f(x)是未知量外,还有其他未知量,如(或)等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出.分段函数第一步:求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值.第二步:当出现的形式时,应从内到外依次求值.第三步:当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点。结论:复合函数:一般地,对于两个函数和,如果通过变量可以表示成的函数,那么称这个函数为函数和的复合函数,记作,其中叫做复合函数的外层函数,叫做的内层函数.抽象函数的定义域的求法:(1)若已知函数的定义域为,则复合函数的家义域由求出.(2)若已知函数的定义域为,则的定义域为在时的值域.易错提醒:函数的概念①一般地,给定非空数集,,按照某个对应法则,使得中任意元素,都有中唯一确定的与之对应,那么从集合到集合的这个对应,叫做从集合到集合的一个函数.记作:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.集合叫做函数的定义域,记为,集合叫做值域,记为.②函数的实质是从一个非空集合到另一个非空集合的映射.③函数表示法:函数书写方式为,④函数三要素:定义域、值域、对应法则.⑤同一函数:两个函数只有在定义域和对应法则都相等时,两个函数才相同.基本的函数定义域限制求解函数的定义域应注意:①分式的分母不为零;②偶次方根的被开方数大于或等于零:③对数的真数大于零,底数大于零且不等于1;④零次幂或负指数次幂的底数不为零;⑤三角函数中的正切的定义域是且;⑥已知的定义域求解的定义域,或已知的定义域求的定义域,遵循两点:①定义域是指自变量的取值范围;②在同一对应法则∫下,括号内式子的范围相同;⑦对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域.基本初等函数的值域①的值域是.②的值域是:当时,值域为;当时,值域为.③的值域是.④且的值域是.⑤且的值域是.分段函数的应用分段函数问题往往需要进行分类讨论,根据分段函数在其定义域内每段的解析式不同,然后分别解决,即分段函数问题,分段解决.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例1.函数的定义域为()A.B.C.D.【答案】C【详解】由题意得,解得,则定义域为,故选:C.变式1:设,若,则()A.14B.16C.2D.6【答案】A【详解】因为的定义域为,则,解得,若,则,可得,不合题意;若,则,可得,解得;综上所述:.所以.故选:A.变式2:已知集合,则()A.B.C.D.【答案】C【详解】由题意得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归...