小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05三角函数易错点一:三角函数值正负判断不清导致错误(任意角、弧度制及任意角的三角函数)1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S={β|β=k⋅360°+α,k∈Z}.(3)象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad,1rad=180°π.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)扇形的弧长公式:l=|α|⋅r,扇形的面积公式:S=12lr=12|α|⋅r2.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点P(x,y)时,则sinα=y,cosα=x,tanα=yx(x≠0).(2)推广:三角函数坐标法定义中,若取点PP(x,y)是角α终边上异于顶点的任一点,设点P到原点O的距离为r,则sinα=yr,cosα=xr,tanα=yx(x≠0)三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sinαR++--cosαR+--+tanα{α|α≠kπ+π2,k∈Z}+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T.三角函数线有向线段MP为正弦线;有向线段OM为余弦线;有向线段AT为正切线易错提醒:(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数赋值来求得所需的角.(2)确定的终边位置的方法先写出或的范围,然后根据的可能取值确定或的终边所在位置.(3)利用三角函数的定义,已知角终边上一点的坐标可求的三角函数值;已知角的三角函数值,也可以求出角终边的位置.(4)判断三角函数值的符号,关键是确定角的终边所在的象限,然后结合三角函数值在各象限的符号确定所求三角函数值的符号,特别要注意不要忽略角的终边在坐标轴上的情况.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例如图,已知两质点A,B同时从点P出发,绕单位圆逆时针做匀速圆周运动,质点A,B运动的角速度分别为3rad/s和5rad/s,设两质点运动时这两质点间的距离为.(1)求的解析式;(2)求这两质点从点P出发后第n次相遇的时间(单位:s).【详解】(1)由质点A,B运动的角速度分别为3rad/s和5rad/s,得时质点A,B的坐标分别为,,则,所以的解析式为.(2)因为两质点从点P出发后每相遇一次即对应函数的一个零点,因此为在区间上第n个零点,由,得,解得,所以两质点从点P出发后第n次相遇的时间.变式1.如图,在平面直角坐标系中,锐角的顶点与原点重合,始边与轴的非负半轴重合,终边小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与单位圆交于点,.(1)求的值;(2)射线绕坐标原点按逆时针方向旋转后与单位圆交于点,点与关于轴对称,求的值.【详解】(1)解:因为锐角的终边与单位圆交于点,,所以.(2)设单位圆与x轴负半轴交点为Q,则,设,则,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免...